Supporting Information

Transition Metal Embedded Boron Doped Graphene for Reduction of CO₂ to HCOOH

Sudatta Giri, Purushothaman M, Debolina Misra*

Materials Modeling and Simulation Laboratory, Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, India, 600127

Figure S1: Optimized structures of the TM SAs in their respective preferred doping sites.

Figure S2: Projected density of states (PDOS) of the TM@B-Gr catalysts (TM = Fe, Co and Ni). Red dotted line is the fermi level.

Figure S3: Energy variations with time in Ab Initio Molecular Dynamics (AIMD) simulation for 5 ps at 300 K on TM@B-Gr.

Figure S4: CO_2 and H_2O co-adsorption on TM@B-Gr.

Figure S5: Projected density of states (PDOS) of TM-3d, CO₂-2p and H₂O for Sc- and V@B-Gr.

Figure S6: (a) DFT-optimized structural geometries for preferred reaction pathway and **(b)** Free energy profiles for two PCET CO₂RR pathway in presence of H₂O on TM@B-Gr.

ТМ	BE (eV)
Sc	-3.81
Ti	-4.02
V	-3.42
Cr	-2.37
Mn	-2.04
Fe	-2.97
Со	-3.86
Ni	-3.51
Cu	-2.51
Zn	-0.15

Table S1: Binding energy of TM SAs in presence of H₂O.

Adsorbate	ZPE (eV)	-TS (eV)	$G-E_{elec}\left(eV\right)$	
<i>CO</i> [*] ₂	0.330	-0.255	0.075	
COOH*	0.619	-0.098	0.521	
CO*	0.219	-0.131	0.088	
OCHO*	0.592	-0.158	0.434	
HCOOH*	0.940	-0.150	0.790	

 Table S2: Contributions of zero-point energy and entropic corrections to adsorbate free energies[1,2].

	H-Adsorption				
ТМ	E _{ads} (eV)	ΔG (eV)			
Sc	2.283	2.523			
V	2.057	2.297			
Cr	-0.336	-0.096			
Mn	-0.761	-0.521			
Fe	-0.698	-0.458			
Со	-0.229	0.011			
Ni	-0.198	0.042			

Table S3: Adsorption energies and free energies for H-adsorption on TM@B-Gr catalysts.

	DFT						DFT+U		
1 M	d _{TM-O} (Å)	<0-C- 0	О—С (Å)	<i>E</i> ^{<i>CO2</i>} _{<i>ads</i>} (eV)	Δ <i>G^{CO2}</i> (eV)	q _{CO2} (e)	<i>E</i> ^{<i>CO2</i>} _{<i>ads</i>} (eV)	Δ <i>G^{CO2}</i> (eV)	q _{CO2} (e)
Sc	1.90	141	1.29	-0.87	-0.19	-0.99	-0.62	-0.06	-0.84
V	2.03	140	1.29	-1.45	-0.77	-0.81			
Cr	1.88	133	1.33	-0.39	0.29	-0.81			
Mn	1.98	141	1.29	-1.26	-0.58	-0.64			
Fe	1.90	141	1.29	-0.55	0.13	-0.57	-0.24	0.44	-0.51
Co	1.90	142	1.28	-0.32	0.36	-0.54			
Ni	1.92	145	1.27	-0.47	0.21	-0.46			

Table S4: TM—O (O of CO₂ molecule) and O—C bond length, O-C-O bond angles, bader charge for CO₂, adsorption energy (E_{ads}), adsorption free energies (ΔG) of CO₂ in presence of H₂O.

	DFT			DFT+U				
ТМ	СООН		ОСНО		CO	ОН	0	СНО
	E _{ads} (eV)	ΔG (eV)						
Sc	-3.13	0.23	-5.75	-2.26	-3.03	0.07	-5.72	-2.47
V	-2.93	1.01	-3.65	0.42				
Cr	-2.44	0.44	-3.94	-0.93				
Mn	-3.01	0.64	-4.68	-0.80				
Fe	-2.19	0.85	-3.67	-0.49	-1.73	1.00	-3.95	-1.00
Со	-2.48	0.32	-2.79	0.16				
Ni	-2.37	0.59	-2.65	0.45				

	DFT					DFT+U			
ТМ	С	СО НСООН		НСООН		0	HCC	ОН	
	E _{ads} (eV)	ΔG (eV)							
Sc	-1.36	0.15	-	-	-1.28	0.14	-	-	
V	-1.01	0.90	-	-					
Cr	-1.30	-0.48	-0.19	1.81					
Mn	-1.84	-0.35	-	-					
Fe	-1.63	-1.06	-0.63	1.09	-1.23	-1.12	-0.65	1.35	
Со	-1.56	-0.70	-0.62	0.23					
Ni	-1.80	-1.04	-0.36	0.34]				

Table S5: Adsorption energies and free energies for different intermediates on TM@B-Gr in presence of H_2O .

System	U _L (V)	PDS
V@B-Gr ^{This work}	-0.22	C00H* → C0*
Co@B-Gr ^{This work}	-0.60	ОСНО*→НСООН*
Ni@B-Gr ^{This work}	-0.57	<i>CO</i> [*] ₂ →COOH [*]
Co-N ₄ @Gr[2]	-0.69	CO ₂ →COOH*
Ni-N ₄ @Gr[2]	-1.51	CO ₂ →0CHO*
NiN4@Gr[3]	-1.01	CO ₂ →COOH*
VN ₄ [4]	-1.03	ОСНО*→НСООН*
VN ₄ -GN[4]	-1.19	ОСНО*→НСООН*
Ni-N ₂ @Gr[5]	-0.63	CO ₂ →COOH*
Ni-N ₃ @Gr[5]	-0.62	CO ₂ →COOH*
Ni-N ₄ @Gr[5]	-1.29	CO ₂ →COOH*
Co-GN ₄ [6]	-0.72	CO ₂ →COOH*
V-N ₄ [7]	-0.84	C00H*→C0*
Ni-N ₄ [7]	-1.35	CO ₂ →0CHO*
Ni-N ₁ C ₂ [8]	-0.94	CO ₂ →COOH*
Ni-N ₃ C ₁ [8]	-0.83	CO ₂ →COOH*

Table S6: Comparison of limiting potentials (U_L) for CO₂ reduction on TM@B-Gr and TM@N-Gr catalysts.

References:

 S. Zhou, W. Pei, J. Zhao, A. Du, Silicene catalysts for CO₂ hydrogenation: the number of layers controls selectivity, Nanoscale 11 (2019) 7734–7743. https://doi.org/10.1039/C9NR01336A.

- [2] Y. Yang, J. Li, C. Zhang, Z. Yang, P. Sun, S. Liu, Q. Cao, Theoretical Insights into Nitrogen-Doped Graphene-Supported Fe, Co, and Ni as Single-Atom Catalysts for CO₂ Reduction Reaction, J. Phys. Chem. C 126 (2022) 4338–4346. https://doi.org/10.1021/acs.jpcc.1c09740.
- [3] A. Tripathi, R. Thapa, Optimizing CO₂RR selectivity on single atom catalysts using graphical construction and identification of energy descriptor, Carbon 208 (2023) 330–337. https://doi.org/10.1016/j.carbon.2023.03.065.
- [4] Z. Yang, Z. Cao, L. Cheng, K. Li, Y. Wang, Z. Wu, Theoretical study on the influence of the extra N in transition metal-N4 embedded graphene as efficient CO₂ reduction catalysts, Applied Surface Science 616 (2023) 156494. https://doi.org/10.1016/j.apsusc.2023.156494.
- [5] C. Guo, T. Zhang, X. Liang, X. Deng, W. Guo, Z. Wang, X. Lu, C.-M.L. Wu, Single transition metal atoms on nitrogen-doped carbon for CO₂ electrocatalytic reduction: CO production or further CO reduction?, Applied Surface Science 533 (2020) 147466. https://doi.org/10.1016/j.apsusc.2020.147466.
- [6] Z. Lou, W. Li, H. Yuan, Y. Hou, H. Yang, H. Wang, Structural rule of N-coordinated singleatom catalysts for electrochemical CO₂ reduction, J. Mater. Chem. A 10 (2022) 3585–3594. https://doi.org/10.1039/D1TA09015A.
- [7] X. Wang, H. Niu, X. Wan, J. Wang, C. Kuai, Z. Zhang, Y. Guo, Identifying TM-N4 active sites for selective CO₂-to-CH₄ conversion: A computational study, Applied Surface Science 582 (2022) 152470. https://doi.org/10.1016/j.apsusc.2022.152470.
- [8] Y. Meng, L. Ying, Y. Tao, L. Ma, B. Li, Y. Xing, X. Liu, Y. Ma, X. Wen, DFT Study on Effect of Metal Type and Coordination Environment on CO₂ ECR to C₁ Products over M–N–C Catalysts, Langmuir 40 (2024) 10663–10675. https://doi.org/10.1021/acs.langmuir.4c00590.