

PCCP

Electronic Supplementary Information

Periodic Precipitation Banding of Metal Hydroxides in Agarose Gels via Cyclic-Voltage-Driven Reaction–Transport–Reaction Process

Hisashi Hayashi^{*,a}, Rina Arifuku^a, Kaho Yamada^a, Misato Nampo^{a,} Kana Ogitani^b, Toyohiko Aiki^b

a Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyoku, Tokyo 112-8681, Japan.

b Department of Mathematics, Physics and Computer Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.

E-mail: hayashih@fc.jwu.ac.jp

Additional Figures and Tables

Fig. S1 E_{STE} -dependence of d_{ave} for the Fe, Co, Ni, Cu, Zn, In, and Sn anode RTR systems.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2025

Fig. S2 D^0 -dependence of d_{ave} for the Fe, Co, Ni, Cu, and Zn anode RTR systems.

Fig. S3 pK_{sp} -dependence of d_{ave} for the Fe, Co, Ni, Cu, Zn, In, and Sn anode RTR systems

Fig. S4 E_{STE} -dependence of w_{ave} for the Fe, Co, Ni, Cu, Zn, In, and Sn anode RTR systems.

Fig. S5 D^0 -dependence of w_{ave} for the Fe, Co, Ni, Cu, and Zn anode RTR systems.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2025

Fig. S6 pK_{sp} -dependence of w_{ave} for the Fe, Co, Ni, Cu, Zn, In, and Sn anode RTR systems.

Fig. S7 E_{STE} -dependence of x_{1st} for the Fe, Co, Ni, Cu, Zn, In, and Sn anode RTR systems.

Fig. S8 D^0 -dependence of x_{1st} for the Fe, Co, Ni, Cu, and Zn anode RTR systems.

Fig. S9 pK_{sp} -dependence of x_{1st} for the Fe, Co, Ni, Cu, Zn, In, and Sn anode RTR systems.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2025

10 | *PCCP*

Cathode	$d_{ m ave}(m mm)^{ m a}$	W _{ave} (mm) ^b	x _{1st} (mm) ^c	
Ti	0.65 ± 0.16	0.33 ± 0.10	12.6 ± 1.1	
Ni	0.67 ± 0.20	0.32 ± 0.13	12.9 ± 0.7	
Cu	1.20 ± 0.40	0.33 ± 0.17	13.8 ± 0.7	
Ag	0.96 ± 0.32	0.30 ± 0.08	13.7 ± 0.7	
W	0.69 ± 0.15	0.25 ± 0.11	13.5 ± 1.2	

Table S1. Banding parameters for the periodic bands shown in Fig. 3 (except Mo cathode system).

 ${}^{a}d_{ave}$: Average interband distance.

 ${}^{b}w_{ave}$: Average band width.

 $^{c}x_{1st}$: Average distance between the anode surface and the first precipitation band to emerge.

L (mm)ª	d _{ave} (mm) ^b	w _{ave} (mm) ^c	$x_{1st}(mm)^d$	
40	0.70 ± 0.29	0.31 ± 0.12	9.5 ± 0.5	
50	1.20 ± 0.40	0.33 ± 0.17	13.8 ± 0.7	
60	1.11 ± 0.44	0.32 ± 0.10	15.5 ± 0.9	

Table S2. Banding parameters for the periodic bands shown in Fig. 5.

^a*L*: Length of gel column.

 ${}^{b}d_{ave}$: Average interband distance.

 $^{c}w_{ave}$: Average band width.

 ${}^{d}x_{1st}$: Average distance between the anode surface and the first precipitation band to emerge.

Fig. S10 *L*-dependence of x_{1st} for the Cu anode RTR system.

This journal is © The Royal Society of Chemistry 2025

PCCP			

$d_{ m ave}(m mm)^{ m b}$	<i>w</i> _{ave} (mm) ^c	$x_{1st}(mm)^d$			
0.57 ± 0.30	0.17 ± 0.06	12.4 ± 0.5			
1.20 ± 0.40	0.33 ± 0.17	13.8 ± 0.7			
1.19 ± 0.39	0.33 ± 0.17	13.8 ± 0.7			
	$\frac{d_{\text{ave}} (\text{mm})^{\text{b}}}{0.57 \pm 0.30}$ 1.20 ± 0.40 1.19 ± 0.39	$d_{ave} (mm)^b$ $w_{ave} (mm)^c$ 0.57 ± 0.30 0.17 ± 0.06 1.20 ± 0.40 0.33 ± 0.17 1.19 ± 0.39 0.33 ± 0.17	$d_{ave} (mm)^b$ $w_{ave} (mm)^c$ $x_{1st}(mm)^d$ 0.57 ± 0.30 0.17 ± 0.06 12.4 ± 0.5 1.20 ± 0.40 0.33 ± 0.17 13.8 ± 0.7 1.19 ± 0.39 0.33 ± 0.17 13.8 ± 0.7		

Table S3. Banding parameters for the periodic bands shown in Fig. 6.

^aL: Diameter of gel column.

_

 ${}^{b}d_{ave}$: Average interband distance.

 $^{c}w_{ave}$: Average band width.

 $^{d}x_{1st}$: Average distance between the anode surface and the first precipitation band to emerge.

Electronic Supplementary Information

Table 34. Banang parameters for the periodic banas shown in Fig. 7.					
C _{se} (mM) ^a	$d_{ m ave}(m mm)^{ m b}$	W _{ave} (mm) ^c	$x_{1st}(mm)^d$		
5	1.46 ± 0.37	0.36 ± 0.10	14.2 ± 0.7		
10	1.20 ± 0.40	0.33 ± 0.17	13.8 ± 0.7		
20	1.18 ± 0.30	0.40 ± 0.17	12.6 ± 0.7		
30	1.01 ± 0.34	0.48 ± 0.26	12.3 ± 0.8		
40	-	_	11.6 ± 0.8		

Table S4. Banding parameters for the periodic bands shown in Fig. 7.

^aC_{se}: NaNO₃ concentration.

 ${}^{b}d_{ave}$: Average interband distance.

 $^{c}w_{ave}$: Average band width.

 $^{d}x_{1st}$: Average distance between the anode surface and the first precipitation band to emerge.

Fig. S11 C_{se} -dependence of x_{1st} for the Cu anode RTR system.

Fig. S12 Spatiotemporal evolution of periodic bands formed in three gel columns (L = 50 mm, $\phi = 4 \text{ mm}$, $C_{se} = 10 \text{ mM}$) using an Al anode and Cu cathode at 298 K under the following voltage conditions: $E_H = 3 \text{ V}$, $E_L = 1 \text{ V}$, $T_H = 1 \text{ h}$, and $T_L = 2 \text{ h}$. The numbers of periodic bands (N_B) observed in the gel column during each cycle are shown. The cycle numbers (N_C) in which the images were captured are indicated at the top of the image. Some bubbles are visible in the lower part of column 2 for $N_C = 9$ and 10.

Fig. S13 Spatiotemporal evolution of typical periodic bands formed in gel column (L = 50 mm, $\phi = 4 \text{ mm}$, $C_{se} = 10 \text{ mM}$) using a Sn anode and Cu cathode at 298 K under the following voltage conditions: $E_H = 3 \text{ V}$, $E_L = 1 \text{ V}$, $T_H = 1 \text{ h}$, and $T_L = 2 \text{ h}$. The cycle numbers (N_c) in which the images were captured and the numbers of periodic bands (N_B) observed in the gel column during each cycle are indicated at the top of the image.

Fig. S14 Spatiotemporal evolution of typical periodic bands formed in gel column (L = 50 mm, $\phi = 4 \text{ mm}$, $C_{se} = 10 \text{ mM}$) using a Cu anode and Cu cathode at 298 K under the following voltage conditions: $E_H = 3 \text{ V}$, $E_L = 1 \text{ V}$, $T_H = 1 \text{ h}$, and $T_L = 2 \text{ h}$. The cycle numbers (N_C) in which the images were captured and the numbers of periodic bands (N_B) observed in the gel column during each cycle are indicated at the top of the image.

Fig. S15 Spatiotemporal evolution of typical periodic bands formed in gel column (L = 50 mm, $\phi = 4 \text{ mm}$, $C_{se} = 10 \text{ mM}$) using a Zn anode and Cu cathode at 298 K under the following voltage conditions: $E_{H} = 3 \text{ V}$, $E_{L} = 1 \text{ V}$, $T_{H} = 1 \text{ h}$, and $T_{L} = 2 \text{ h}$. The cycle numbers (N_{c}) in which the images were captured and the numbers of periodic bands (N_{B}) observed in the gel column during each cycle are indicated at the top of the image.

Fig. S16 Examples of precipitate density distributions calculated under constant voltage (3 V) application (t = 24 h, $f_i = 1.0$). The calculations were conducted for the same D_{OH}/D_M ratios as used in Fig. 11. The sides of the anode (+) and cathode (–), which exist at distances of 0 and 50 mm, respectively, are indicated at the top of the image. These distributions are essentially continuous rather than discrete or periodic, although some have a sharp peak at the ends.

Fig. S17 Examples of precipitate patterns of $M(OH)_n$ (M = Al, Cu, Zn, and Sn; the elements shown in Fig. 8) in gel columns (L = 50 mm, $\phi = 4 \text{ mm} C_{se} = 10 \text{ mM}$) using M anodes through RTR processes at 298 K under constant voltage (3 V) application (t = 20 h). Each system had a Cu cathode. An essentially single and continuous precipitation band was commonly generated, rather than periodic banding, although the Zn anode system showed considerably inhomogeneous banding.

This journal is © The Royal Society of Chemistry 2025