Supplementary Information – Nuclear Quantum Effects of Surface Mediated C-H Activation

Rhys J. Bunting,[†] Sam Shepherd,[‡] Nikhil Rampal,[†] Sneha Akhade,[†] David M.

Wilkins, *,‡ and Tuan Anh $Pham^{*,\dagger}$

[†]Quantum Simulations Group, Materials Science Division and Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States

[‡]Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom

E-mail: d.wilkins@qub.ac.uk; pham16@llnl.gov

Contents

Machine learning interatomic potential training	3
Bead convergence of centroid molecular dynamics	6

Machine learning interatomic potential training

Force MAE Energy MAE 0.040 Gold Gold Platinum Platinum 0.035 0.0005 0.030 0.0004 e
 e atom
 0.025 eV/Å 0.020 0.015 0.0002 0.010 0.0001 0.005 0.000 0.0000

Training Error

Figure S1: Training error of the potentials. The validation set MAE for the Au potential is 0.000475 eV/atom and 0.0243 eV/Åfor the energy and forces, respectively. The validation set MAE for the Pt potential is = 0.000583 eV/atom and 0.0417 eV/Åfor the energy and forces, respectively.

Parity Plot

Figure S2: Training energy error per atom for the $\operatorname{Au}(111)$ dataset.

Figure S3: Training force component error for the Au(111) dataset.

Figure S4: Training energy error per atom for the Pt(111) dataset.

Figure S5: Training force component error for the Pt(111) dataset.

Bead convergence of centroid molecular dynamics

Figure S6: Bead convergence test of the centroid molecular dynamics derived potential mean force for $\rm CH_3$ activation on $\rm Pt(111).$