Supporting Information

Computational high-throughput screening of high-performance transition metal C8N8 single-atom electrocatalysts for oxygen reduction reaction.

Keyuan Chen^{1,2}, Xingkao Zhang¹, Li Ma¹, Yongzhi Wu¹, Hanqing Li¹, Jueyi Ye,

Ju Rong^{1*}, Xiaohua Yu^{1,2*}, Zhaohua Liu³

¹Faculty of Materials Science and Engineering, Kunming University of Science

and Technology, Kunming, 650093, China

²Yunnan Key Laboratory of Integrated Computational Materials Engineering for Advanced Light Metals, Kunming, 650093, China

³State Key Laboratory of Vanadium and Titanium Resources Comprehensive

Utilization, Panzhihua, 617000, China

List of Contents

Figure S1: Schematic diagram of M-C₈N₈ structure with elements that form C₈N₈ complexes.

Figure S2: Linear relationship between formation energy and d-band center.

Figure S3: The structure diagram of Fe-C₈N₈ monolayer.

Figure S4: AIMD energy change of Fe-C₈N₈, Mn-C₈N₈, Co-C₈N₈, and Ru-C₈N₈ at 1000K.

POSCAR: The POSCAR of Fe-C₈N₈, Mn-C₈N₈, Co-C₈N₈, and Ru-C₈N₈.

Calculation formula: adsorption energy and d band center calculation formula.

Figure S5: Based on the Gibbs free energies of adsorbed oxygen-containing intermediates, the scaling relation of $\Delta G_{OOH*VS} \Delta G_{OH*}$.

Figure S6: Schematic of the molecular orbital energy levels of the O₂ molecule.

Figure S7: The major interactions and energy levels of the scalar relativistic Kohn-

Sham β -spin of isolated FeO₂ with correlation to the orbitals from Fe and O₂.

Figure S8: Schematic interaction of the 3d orbitals of Fe, the 2p orbitals of the O₂

molecule and the projected electronic density of states (PDOS).

Figure S9. ENCUT convergence test.

Figure S10. KPOINTS convergence test.

 Table S1: Formation energies of TM-C₈N₈ monolayers.

Table S2: Adsorption energies of single O molecule on TM-C₈N₈ monolayers.

Table S3: Comparison of the Calculated ORR Electrocatalytic Performance of TM-

C₈N₈ Materials with Experimental Data of TM-PC Materials.

complexes.

Figure. S2. Linear relationship between formation energy and d-band center.

Figure. S3. The structure diagram of Fe-C₈N₈ monolayer.

Figure. S4. AIMD energy change of Fe-C₈N₈, Mn-C₈N₈, Co-C₈N₈, and Ru-C₈N₈ at 1000K.

The POSCAR of Fe-C₈N₈.

POSCAR

1.0

7.0798144341	0.0000000000	0.0000000000
0.0000000000	7.0798144341	0.0000000000
0.0000000000	0.0000000000	15.000000000
C N Fe		
8 8 1		
Direct		
0.156021993	0.395461122	0.500000000
0.843977992	0.604538848	0.500000000
0.604538848	0.156021993	0.500000000
0.395461122	0.843977992	0.500000000
0.843977992	0.395461122	0.500000000
0.156021993	0.604538848	0.500000000
0.395461122	0.156021993	0.500000000
0.604538848	0.843977992	0.500000000
0.290396987	0.000000000	0.500000000
0.709602983	0.000000000	0.500000000
0.00000000	0.290396987	0.500000000
0.000000000	0.709602983	0.500000000
0.330963654	0.330963654	0.500000000

0.669036375	0.669036375	0.50000000
0.669036375	0.330963654	0.500000000
0.330963654	0.669036375	0.500000000
0.500000000	0.500000000	0.500000000

The POSCAR of Mn-C₈N₈.

POSCAR

1.0

7.0798144341	0.0000000000	0.0000000000
0.0000000000	7.0798144341	0.0000000000
0.0000000000	0.0000000000	15.000000000
C N Mn		
8 8 1		
Direct		
0.156021993	0.395461122	0.500000000
0.843977992	0.604538848	0.500000000
0.604538848	0.156021993	0.500000000
0.395461122	0.843977992	0.500000000
0.843977992	0.395461122	0.500000000
0.156021993	0.604538848	0.500000000
0.395461122	0.156021993	0.500000000
0.604538848	0.843977992	0.500000000

0.290396987	0.000000000	0.500000000
0.709602983	0.000000000	0.500000000
0.000000000	0.290396987	0.500000000
0.000000000	0.709602983	0.500000000
0.330963654	0.330963654	0.500000000
0.669036375	0.669036375	0.500000000
0.669036375	0.330963654	0.500000000
0.330963654	0.669036375	0.500000000
0.500000000	0.500000000	0.500000000

The POSCAR of Co-C₈N₈.

POSCAR

1.0

7.0798144341	0.000000000	0.0000000000
0.0000000000	7.0798144341	0.000000000
0.0000000000	0.000000000	15.000000000

C N Co

8 8 1

Direct

0.156021993	0.395461122	0.50000000
0.843977992	0.604538848	0.500000000
0.604538848	0.156021993	0.500000000

0.395461122	0.843977992	0.500000000
0.843977992	0.395461122	0.500000000
0.156021993	0.604538848	0.500000000
0.395461122	0.156021993	0.500000000
0.604538848	0.843977992	0.500000000
0.290396987	0.000000000	0.500000000
0.709602983	0.000000000	0.500000000
0.000000000	0.290396987	0.500000000
0.000000000	0.709602983	0.500000000
0.330963654	0.330963654	0.500000000
0.669036375	0.669036375	0.500000000
0.669036375	0.330963654	0.500000000
0.330963654	0.669036375	0.500000000
0.500000000	0.500000000	0.500000000

The POSCAR of Ru-C₈N₈.

POSCAR

1.0

7.0798144341	0.000000000	0.0000000000
0.0000000000	7.0798144341	0.0000000000
0.0000000000	0.000000000	15.000000000

C N Ru

8 8 1

Direct

0.156021993	0.395461122	0.50000000
0.843977992	0.604538848	0.500000000
0.604538848	0.156021993	0.500000000
0.395461122	0.843977992	0.500000000
0.843977992	0.395461122	0.500000000
0.156021993	0.604538848	0.500000000
0.395461122	0.156021993	0.500000000
0.604538848	0.843977992	0.500000000
0.290396987	0.000000000	0.500000000
0.709602983	0.000000000	0.500000000
0.000000000	0.290396987	0.500000000
0.000000000	0.709602983	0.500000000
0.330963654	0.330963654	0.500000000
0.669036375	0.669036375	0.500000000
0.669036375	0.330963654	0.500000000
0.330963654	0.669036375	0.500000000
0.500000000	0.500000000	0.500000000

(1) The adsorption energies Eads are calculated by the equation.

$$E_{ads} = E_{total} - E_{catalysts} - E_{adsorbates} \#(1)$$

Where E_{total} , $E_{catalysts}$ and $E_{adsorbates}$ represent the energies of the total system after the adsorption, the catalyst, and the adsorbed species, respectively.

(1) The energy of the d band center $E_{d-band center}$ can be calculated by the

$$E_{d-band center} = \frac{\int E \cdot n(E) dE}{\int n(E) dE} \ \#(2)$$

following formula:

Where n(E) is the density of states at energy E, and the integration is performed over the entire energy range of the d orbital.

Figure. S5. Based on the Gibbs free energies of adsorbed oxygen-containing intermediates, the scaling relation of ΔG_{OOH*} vs ΔG_{OH*} .

Figure. S6. Schematic of the molecular orbital energy levels of the O_2 molecule.

Figure. S7. The major interactions and energy levels of the scalar relativistic Kohn–Sham β -spin of isolated FeO₂ with correlation to the orbitals from Fe and O₂.

Figure. S8. Schematic interaction of the 3d orbitals of Fe, the 2p orbitals of the O_2 molecule and the projected electronic density of states (PDOS).

Figure. S9. ENCUT convergence test.

Figure. S10. KPOINTS convergence test.

structure	Ea	E _b	E _{atom}	Ef
Sc	-143.24	-132.82	-2.02	-8.40
Ti	-147.93	-132.82	-2.39	-12.72
V	-149.22	-132.82	-3.58	-12.82
Cr	-149.45	-132.82	-5.45	-11.18
Mn	-149.16	-132.82	-5.15	-11.19
Fe	-148.05	-132.82	-3.24	-11.99
Co	-146.71	-132.82	-1.84	-12.05
Ru	-144.34	-132.82	-0.29	-11.23
Cu	-140.64	-132.82	-0.24	-7.58
Zn	-137.38	-132.82	-0.01	-4.55
Y	-138.64	-132.82	-2.08	-3.74
Zr	-144.34	-132.82	-2.25	-9.27
Nb	-146.90	-132.82	-3.18	-10.91
Мо	-147.17	-132.82	-4.65	-9.70
Тс	-147.25	-132.82	-3.28	-11.15
Ru	-145.97	-132.82	-1.21	-11.95
Rh	-144.09	-132.82	-1.26	-10.02
Pd	-141.01	-132.82	-1.48	-6.71
Ag	-135.84	-132.82	-0.20	-2.82
Cd	-133.73	-132.82	-0.01	-0.90

Table S1. Formation energies of TM-C $_8N_8$ monolayers.

Hf	-146.65	-132.82	-3.15	-10.68
Ta	-148.76	-132.82	-3.50	-12.44
W	-148.71	-132.82	-4.57	-11.31
Re	-148.03	-132.82	-4.61	-10.60
Os	-146.86	-132.82	-2.89	-11.14
Ir	-144.82	-132.82	-1.23	-10.77
Pt	-141.82	-132.82	-0.53	-8.47
Au	-136.68	-132.82	-0.19	-3.67
Hg	-135.21	-132.82	-0.01	-2.38
Rf	-139.20	-132.82	-1.12	-5.26
Db	-139.20	-132.82	-1.12	-5.26
Sg	-139.20	-132.82	-1.12	-5.26
Bh	-139.20	-132.82	-1.12	-5.26
Hs	-139.20	-132.82	-1.12	-5.26
Mt	-139.20	-132.82	-1.12	-5.26
Ds	-139.20	-132.82	-1.12	-5.26
Rg	-139.20	-132.82	-1.12	-5.26
Cn	-139.20	-132.82	-1.12	-5.26

structure	E _{total}	Ecatalysts	Eadsorbates	E _{ads}
Sc	-147.77	-143.24	-1.54	-2.62
Ti	-154.89	-147.93	-1.54	-4.98
V	-156.58	-149.22	-1.54	-5.38
Cr	-156.40	-149.45	-1.54	-4.96
Mn	-155.37	-149.16	-1.54	-4.22
Fe	-153.03	-148.05	-1.54	-3.00
Co	-150.54	-146.71	-1.54	-1.88
Ni	-146.83	-144.34	-1.54	-0.57
Cu	-142.88	-140.64	-1.54	-0.32
Zn	-139.67	-137.38	-1.54	-0.36
Y	-143.27	-138.64	-1.54	-2.74
Zr	-151.40	-144.34	-1.54	-5.10
Nb	-155.04	-146.90	-1.54	-6.16
Мо	-155.09	-147.17	-1.54	-5.94
Tc	-154.65	-147.25	-1.54	-5.41
Ru	-151.92	-145.97	-1.54	-3.97
Rh	-148.50	-144.09	-1.54	-2.45
Pd	-143.69	-141.01	-1.54	-0.75
Ag	-137.94	-135.84	-1.54	-0.26
Cd	-138.01	-133.73	-1.54	-2.33

Table S2. Adsorption energies of single O molecule on TM-C₈N₈ monolayers

Hf	-153.94	-146.65	-1.54	-5.32
Ta	-156.93	-148.76	-1.54	-6.19
W	-156.48	-148.71	-1.54	-5.79
Re	-155.22	-148.03	-1.54	-5.19
Os	-152.82	-146.86	-1.54	-3.99
Ir	-149.32	-144.82	-1.54	-2.54
Pt	-144.77	-141.82	-1.54	-1.02
Au	-138.79	-136.68	-1.54	-0.22
Hg	-137.63	-135.21	-1.54	-0.53
Rf	-140.49	-139.20	-1.54	0.63
Db	-140.49	-139.20	-1.54	0.63
Sg	-140.49	-139.20	-1.54	0.63
Bh	-140.49	-139.20	-1.54	0.63
Hs	-140.49	-139.20	-1.54	0.63
Mt	-140.49	-139.20	-1.54	0.63
Ds	-140.49	-139.20	-1.54	0.63
Rg	-140.49	-139.20	-1.54	0.63
Cn	-140.49	-139.20	-1.54	0.63

structure	$\Delta G_{O^{\ast}}$	ΔG_{OH^*}	ΔG_{OOH*}	η_{ORR}
Fe- C ₈ N _{8 (theory)}	2.16	0.87	3.96	0.26
Fe-Pc _(experiment)	1.65	1.00	3.91	0.54
Mn- C ₈ N _{8 (theory)}	1.76	0.87	4.06	0.36
Mn-Pc _(experiment)	1.65	1.03	4.05	0.56
Co- $C_8 N_8$ (theory)	3.46	1.58	4.62	0.93
Co-Pc _(experiment)	3.13	1.40	4.27	0.58
Ru- C_8N_8 (theory)	1.96	0.67	4.11	0.42
Ru-Pc _(experiment)	4.49	2.38	5.11	1.42

Table S3. Comparison of the Calculated ORR Electrocatalytic Performance of TM-

C₈N₈ Materials with Experimental Data of TM-PC Materials.