Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Captions to Figures S1 – S17

- Figure S1 Selected internuclear distances (Å) in D_{2h} H₂P (upper panel) and H₂Pz (lower panel) molecules.
- Figure S2 Selected internuclear distances (Å) in D_{2h} H₂TPP (upper panel) and H₂Pc (lower panel) molecules.
- Figure S3 Selected internuclear distances (Å) in D_{4h} P²⁻ (upper panel) and Pz²⁻ (lower panel) molecular ions.
- Figure S4 Selected internuclear distances (Å) in D_{4h} TPP²⁻ (upper panel) and Pc²⁻ (lower panel) molecular ions.
- Figure S5 Energy position of the GS H₂P, H₂TPP, H₂Pc, and H₂Pz FMOs compared with the Py and *i*-Ind HOMO energies.
- Figure S6 3D CPs of the Py 1a₂ HOMO (left panel) and the i-Ind 2a₂ HOMO (right panel). Displayed isosurfaces correspond to ± 0.02 e^{1/2} × Å^{-3/2} values. Isolated Py and *i*-Ind have a C_{2v} symmetry.
- Figure S7 3D CP of the *i*-IND $1a_2 \pi$ MO. Displayed isosurfaces correspond to $\pm 0.02e^{1/2} \times \text{Å}^{-3/2}$ values.
- Figure S8 3D CPs of the H_2P FMOs generated by the $1a_2$ Py HOMO. The 3D CP of the $5b_{1u}$ FMO has been also displayed to show the absence of any parenthood with the Py $1a_2$ HOMO. Displayed isosurfaces correspond to ± 0.02 $e^{1/2} \times \text{Å}^{-3/2}$ values.
- Figure S9 3D CPs of low-lying H_2P π MOs. Displayed isosurfaces correspond to $\pm 0.02e^{1/2} \times \mathring{A}^{-3/2}$ values.
- Figure S10 Qualitative representation of the parenthood between $^{pmc}\pi$ and $^{pmc}\pi^*$ FMOs upon the $D_{2h} \rightarrow D_{4h}$ switching. Energy differences are not in scale while the ordering of the energy levels is that of the H_2TPP (D_{2h}) and TPP^{2-} (D_{4h})
- Figure S11 3D CPs of one partner of the unoccupied D_{4h} TPP²⁻ $12e_g$ and $9b_{1u}$ π^* MOs (upper panel). 3D CPs of one partner of the D_{4h} Pc^{2-} $6e_g$ and $3b_{1u}$ π^* MOs (lower panel). Displayed isosurfaces correspond to $\pm 0.02e^{1/2} \times \mathring{A}^{-3/2}$ values. The 3D CP of the occupied TPP²⁻ and Pc^{2-} 2a_{1u} MO is also reported. The $2a_{1u}$ MO corresponds, both in TPP²⁻ and Pc^{2-} , to an occupied π orbital, highly localized on the pmc and characterized by four nodal planes passing through N^{py} (σ_v) and X^m (σ_d), X = C in TPP²⁻ and X = N in Pc^{2-} . The $2a_{1u}$ MO absolute energy value is 0.924 eV and 0.883 eV in TPP²⁻ and Pc^{2-} , respectively. TPP²⁻ and Pc^{2-} optimized Cartesian coordinates are those reported in Table S7 and Table S8, respectively.
- Figure S12 Licorice representation of superimposed optimized structures of (a) CoPc and CoPc⁺, (b) NiPc and NiPc⁺, (c) CuPc and CuPc⁺, and (d) ZnPc and ZnPc⁺. BP86 optimized Cartesian coordinates of ${}^{2}A_{1g}$ CoPc and ${}^{3}A_{1u}$ CoPc⁺ are reported in Table S23 and Table S24, respectively; BP86 optimized Cartesian coordinates of ${}^{1}A_{1g}$ NiPc and ${}^{2}A_{1u}$ NiPc⁺ are reported in Table S27 and Table S28, respectively; BP86 optimized Cartesian coordinates of ${}^{2}B_{1g}$ CuPc and ${}^{3}B_{1u}$ CuPc⁺ are reported in Table S30 and Table S31, respectively; BP86 optimized Cartesian coordinates of ${}^{1}A_{1g}$ ZnPc and ${}^{2}A_{1u}$ ZnPc⁺ are reported in Table S33 and Table S34, respectively.
- Figure S13 Schematic representation of the ${}^{S}_{T}CM^{nnn}_{100}$ ns AOs SALC of symmetry a, b, and e. Large red and green spheres represent ${}^{S}CM$ ns AOs and corresponding different phases.
- Figure S14 Schematic representation of the ${}^{S}_{H}CM^{nn}_{100}$ ns AOs SALC of symmetry a, b, and e. Large red and green spheres represent ${}^{S}CM$ ns AOs and corresponding different phases.

- Figure S15 Schematic representation of the $^{S}_{B}CM^{nn}_{100}$ ns AOs SALC of symmetry a and b. Large red and green spheres represent ^{S}CM ns AOs and corresponding different phases.
- Figure S16 Schematic representation of the ${}^{S}_{T}CM^{nnn}_{111}$ ns AOs SALC of symmetry a, b, and e (1e and 2e). Large red and green spheres represent ${}^{S}CM$ ns AOs and corresponding different phases.
- Figure S17 Schematic representation of the ${}^{S}_{H}CM^{nnn}_{111}$ ns AOs SALC of symmetry a and e. Large red and green spheres represent ${}^{S}CM$ ns AOs and corresponding different phases.