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S1 Brief overview of the ALMO-EDA methods

S1.1 The second-generation ALMO-EDA methods

The second-generation absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA-II)1–3

partitions the total intermolecular interaction energy (∆EINT) evaluated using Kohn-Sham density functional theory
(KS-DFT) into five components: permanent electrostatics (ELEC), Pauli repulsion (PAULI), dispersion (DISP),
polarization (POL), and charge transfer (CT):

∆EINT = ∆EELEC +∆EPAULI +∆EDISP +∆EPOL +∆ECT. (S1)

This decomposition is achieved by defining two intermediate states connecting the initial (isolated fragments) and
final (fully relaxed complex) states in the formation of an intermolecular complex:4 (i) the frozen (Frz) state, where
the fragments interact with each other under the geometry of the final complex but their electronic structures (KS
orbitals) remain the same as in isolation; (ii) the polarized (Pol) state, on which the fragment orbitals are allowed to
relax in the presence of other fragments while inter-fragment orbital mixing remains forbidden. The energy difference
between the Frz state and the sum of the isolated fragment energies ({EA}) is defined as the frozen interaction
energy (∆EFRZ):

∆EFRZ = EFrz −
Nfrag∑
A=1

EA, (S2)

and the polarization and charge-transfer contributions are defined in a similar manner:

∆EPOL = EPol − EFrz (S3)

∆ECT = EFull − EPol (S4)

where EPol is the energy of the polarized state and EFull is the KS-DFT energy of the fully relaxed intermolecular
complex.

To obtain the 5-term decomposition as given by Eq. (S1), we need to further decompose the frozen interaction into
the ELEC, PAULI, and DISP contributions:

∆EFRZ = ∆EELEC +∆EPAULI +∆EDISP (S5)

This can be achieved by using either the “quasiclassical”5 or “orthogonal”6 decomposition schemes. Since the latter
method has not been made compatible with calculations involving effective core potentials (which is needed for
iodine) yet, in this work we employed the “quasiclassical” decomposition scheme exclusively. Under this scheme, the
permanent electrostatic interaction between fragments is simply defined as the Coulomb interaction between the
charge densities of isolated fragments (including both electrons and nuclei):

∆EELEC =
∑
A<B

∫ ∫
ρtotA (r1)

1

|r1 − r2|
ρtotB (r2)dr1dr2 (S6)

The definition of the DISP term requires an auxiliary “dispersion-free” exchange-correlation (DFXC) functional in
company with the primary functional:

∆EDISP =

EXC[PFRZ]−
Nfrag∑
A=1

EXC[PA]

−

EDFXC[PFRZ]−
Nfrag∑
A=1

EDFXC[PA]

 , (S7)

where EXC and EDFXC are the exchange-correlation energy calculated using the primary and the “dispersion-free”
XC functional, respectively, PFRZ is the one-particle density matrix (1PDM) for the frozen state, and PA’s are the
1PDMs for the isolated fragments. In this work, we employed the Hartree-Fock “exchange functional” as the DFXC
method, which was shown to give reliable results for dispersion-corrected hybrid functionals such as ωB97X-V.7

Finally, with ∆EELEC and ∆EDISP both defined, the remainder of ∆EFRZ is defined as ∆EPAULI.
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Deeper insights into the polarization and charge-transfer terms can be obtained using the recently developed
non-perturbative polarization and charge-transfer analysis.8,9 Compared to the previously developed perturbative
ALMO-based charge-transfer analysis,10 the non-perturbative approach has the advantage that the energetic
contributions from the forward and backward donations are almost exactly fragment-pairwise additive such that the
undesirable higher-order term (which cannot be further partitioned) can be ignored:9

∆ECT =

Nfrag∑
A<B

∆EA→B
CT +∆EB→A

CT (S8)

Similarly, the total polarization energy can be partitioned into exactly fragment-wise additive contributions:8

∆EPOL =

Nfrag∑
A=1

∆EA
POL (S9)

We refer the reader to Refs. 8 and 9 for the mathematical details involved in these analysis schemes, including the
definition of the complementary occupied-virtual pairs (COVPs).

S1.2 Adiabatic ALMO-EDA

The ALMO-EDA-II scheme recapitulated above can be referred to as a vertical EDA scheme because all the terms
are calculated within the same geometry (typically the fully relaxed structure of the complex). To decompose the
shifts in structural and vibrational features induced by interactions between molecules, the ALMO-EDA method
has been reformulated to adopt an adiabatic picture,11 in which the complex geometry is relaxed on the potential
energy surfaces (PESs) associated with the frozen (Frz), polarized (Pol), and fully relaxed (Full) states as defined
in ALMO-EDA. The harmonic frequencies can then be calculated at the optimized structure on each surface. In
this way, the shift in the frequency of a vibrational mode upon the complex formation (∆νtotal) can be partitioned
into frozen (FRZ), polarization (POL), and charge transfer (CT) contributions, which is in the same fashion as the
decomposition of interaction energy, except that the frozen contribution cannot be further partitioned within the
current adiabatic EDA framework:

∆νtotal = ∆νFRZ +∆νPOL +∆νCT (S10)

∆νFRZ = νFrz − νIso, ∆νPOL = νPol − νFrz, ∆νCT = νFull − νPol, (S11)

where νIso, νFrz, νPol, and νFull stand for harmonic frequencies calculated at the optimized geometries in the isolated
fragment, frozen, polarized, and fully relaxed states, respectively. We note that the FRZ, POL, and CT contributions
to the vibrational frequency shift, ∆νFRZ, ∆νPOL, and ∆νCT, are not necessarily proportional to the magnitudes
of the corresponding energy components, since different energy components would have different impacts on the
vibrational frequency of an oscillator, which is closely related to its force constant, the second derivatives of potential
energy with respect to nuclear positions.

The adiabatic ALMO-EDA scheme was further extended to include two additional intermediate states between
the Pol and Full states, on which only one direction of CT (either forward or backward) is allowed.12 These
two intermediate states, which are referred to as the “CTf” and “CTb” states (“f/b” for forward/backward), are
variationally optimized based on the generalized self-consistent field for molecular interaction (SCF-MI)12,13 scheme.
One can thus readily optimize the complex structure on the CTf/CTb surface and calculate the harmonic frequencies.
The vibrational frequency shifts owing to the forward/backward CT can thus be obtained as

∆νCTf = νCTf − νPol (S12)

∆νCTb = νCTb − νPol (S13)
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S2 Computational details

All electronic structure calculations were performed using the Q-Chem 6.1 software package14, and the IQmol
software was employed to visualize the geometries, molecular orbitals, and electrostatic potential (ESP) maps. The
ALMO-EDA-II1,3 calculations were performed at complex geometries optimized at the ωB97X-V7/def2-SVPD15,16

level, which are exactly the same geometries as those optimized on the “Full” surface in the adiabatic EDA
calculations. The geometry optimizations were set to converge when the maximum component of the nuclear gradient
is below 5.0× 10−5 a.u. and the energy change from the previous iteration is below 10−7 a.u. A larger basis set
(def2-TZVPPD15,16) was then employed for the EDA calculations. The effective core potential associated with the
Karlsruhe “def2” basis sets was applied to iodine. For the numerical integration involved in DFT calculations, a
(99, 590) grid (99 radial shells with 590 Lebedev points in each) was used for the exchange-correlation functional,
and the SG-1 grid17 was used for the VV1018 non-local correlation functional for dispersion correction. Additional
ALMO-EDA calculations were performed (i) using the B3LYP19 functional with Grimme’s D3 correction with
Becke-Johnson damping20 (denoted as “B3LYP-D3(BJ)”), as well as the ωB97X-D3(BJ) functional21 which shares
same parent XC functional as ωB97X-V, and (ii) using the geometries supplied in Ref. 22, which were optimized
at the RI-MP2/cc-pwCVTZ23 level. The results for (i) and (ii) are summarized in Tables S2 and S3, respectively,
which reflect the same trends as the primary set of results (Table S1) that we report in the main paper.

As mentioned in Sec. S1 above, the decomposition of the frozen interaction energy utilizes the “quasiclassical”
scheme5,6 (with Q-Chem keywords EDA CLS ELEC and EDA CLS DISP both set to TRUE), for which the Hartree-Fock
theory was chosen to be the DFXC functional (Q-Chem default). The fragment electrical response function (FERF)
method13 was employed to calculate the polarization energy. The non-perturbative polarization and charge-transfer
analyses8,9 were performed together with the ALMO-EDA-II calculations by setting both EDA POL A and EDA VCT A

to TRUE, and the dominant complementary occupied-virtual pairs (COVPs) in the polarization and charge-transfer
processes were obtained and visualized.

For the adiabatic ALMO-EDA11 calculation, the geometry of the H-bond complexes were optimized on the frozen
(Frz), polarized (Pol), and fully relaxed (Full) surfaces at the ωB97X-V/def2-SVPD level, which was followed by
a harmonic frequency calculation at the optimized geometry on each surface. We note that since the adiabatic
EDA employs the original ALMO definition for the Pol state (nuclear gradients for the FERF-based EPol are
unavailable),4,24 a smaller basis set was used for the adiabatic EDA calculations to avoid potential contamination of
polarization (intra-fragment orbital mixing) by charge transfer (inter-fragment orbital mixing). Due to the lack of
analytical hessian for the Frz and Pol states, the frequencies were calculated using a finite-difference method based
on nuclear gradients (which are available for all three surfaces). The resulting harmonic frequencies were scaled
by a factor of 0.954, which was fitted based on the results of ωB97X-V with the def2-TZVP basis on a recently
compiled vibrational frequency dataset.25 The application of this scaling factor to the vibrational frequency of the
Me3SiH monomer yields νSiH = 2107.0 cm−1, which is in excellent agreement with the experimental value (2109
cm−1) measured in Ar matrix.22 The vibrational forward-backward (VFB) analysis was performed for a selected
set of complexes, for which the same procedure as described above was applied to the two additional intermediate
surfaces, CTf and CTb.

The forces arising from the frozen interaction components were calculated using a 5-point stencil: starting from the
optimized structure of a complex on the frozen surface, we performed ALMO-EDA-II calculations (focusing on the
results of ∆EELEC, ∆EPAULI, and ∆EDISP) with the X−H bond length modified by ±0.0005 and ±0.001 Å. The
forces along the X→H direction arising from component α can then be evaluated based on

fX→H =
∆Eα(x+ 2∆x)− 8∆Eα(x+∆x) + 8∆Eα(x−∆x)−∆Eα(x− 2∆x)

12∆x
(S1)

where α = ELEC, PAULI, or DISP, and ∆x = 0.0005 Å. We note that the forces arising from the three components
do not add up to zero as they compensate for the forces due to the distortion from monomer geometry, i.e., the
elongation or contraction of the X−H bond.
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S3 Additional tables and figures

Table S1: ALMO-EDA-II results (in kJ/mol) for the prototypical protonic and hydridic hydrogen-bond (HB)
complexes investigated in this work. The calculations were performed at the ωB97X-V/def2-TZVPPD level using
geometries optimized with ωB97X-V/def2-SVPD.

System ELEC PAULI DISP POL CT Total

H2O dimer -35.13 32.70 -6.40 -4.83 -7.62 -21.28

CF3H· · ·H2O -21.61 17.97 -5.33 -2.87 -3.09 -14.93

Me3SiH· · · ICN -21.50 36.73 -16.23 -5.83 -9.39 -16.21

Me3SiH· · ·BrCN -12.01 20.88 -12.62 -2.72 -4.48 -10.95

Me3SiH· · · ICF3 -13.61 24.99 -14.98 -2.86 -5.35 -11.81

Me3SiH· · ·COF2 -13.34 20.81 -15.23 -2.15 -2.84 -12.75

Me3SiH· · ·NO2F -11.07 18.01 -14.41 -1.37 -1.76 -10.60

Me3SiH· · ·HCN -9.88 15.01 -11.94 -1.64 -1.68 -10.13

Me3SiH· · ·K+ -35.10 23.19 -5.59 -26.45 -3.85 -47.80

Table S2: ALMO-EDA-II results (in kJ/mol) for the prototypical protonic and hydridic HB complexes investigated
in this work obtained using (i) B3LYP-D3(BJ) and (ii) ωB97X-D3(BJ) functionals with the def2-TZVPPD basis set.
All calculations were performed on geometries optimized at the ωB97X-V/def2-SVPD level.

System
B3LYP-D3(BJ)/def2-TZVPPD

ELEC PAULI DISP POL CT Total

H2O dimer -35.20 33.59 -6.84 -4.81 -8.63 -21.89

CF3H· · ·H2O -21.55 18.41 -5.40 -2.84 -3.65 -15.04

Me3SiH· · · ICN -21.98 37.79 -18.96 -5.44 -12.48 -21.07

Me3SiH· · ·BrCN -12.12 21.39 -14.52 -2.49 -6.17 -13.92

Me3SiH· · · ICF3 -13.99 25.78 -17.14 -2.52 -7.40 -15.27

Me3SiH· · ·COF2 -13.39 21.42 -14.69 -1.95 -3.76 -12.37

Me3SiH· · ·NO2F -11.28 18.54 -13.03 -1.18 -2.33 -9.27

Me3SiH· · ·HCN -9.86 15.45 -12.71 -1.49 -2.43 -11.04

Me3SiH· · ·K+ -35.52 24.04 -11.89 -27.36 -4.51 -55.24

System
ωB97X-D3(BJ)/def2-TZVPPD

ELEC PAULI DISP POL CT Total

H2O dimer -35.09 32.70 -6.07 -4.80 -7.60 -20.86

CF3H· · ·H2O -21.59 17.98 -4.95 -2.85 -3.07 -14.50

Me3SiH· · · ICN -21.35 36.6 -20.90 -5.52 -9.31 -20.48

Me3SiH· · ·BrCN -11.89 20.80 -15.58 -2.51 -4.44 -13.61

Me3SiH· · · ICF3 -13.49 24.89 -18.62 -2.62 -5.29 -15.12

Me3SiH· · ·COF2 -13.23 20.71 -15.60 -1.96 -2.81 -12.88

Me3SiH· · ·NO2F -10.98 17.93 -13.74 -1.20 -1.73 -9.73

Me3SiH· · ·HCN -9.82 14.97 -13.30 -1.54 -1.66 -11.34

Me3SiH· · ·K+ -35.13 23.19 -12.28 -26.13 -3.84 -54.20
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Table S3: ALMO-EDA-II results (in kJ/mol) for the hydridic HB complexes investigated in this work. The
calculations were performed at the ωB97X-V/def2-TZVPPD level using the geometries obtained from the SI of Ref.
22 (optimized using RI-MP2/cc-pwCVTZ).

System ELEC PAULI DISP POL CT Total

Me3SiH· · · ICN -18.91 31.30 -15.01 -5.18 -7.89 -15.68

Me3SiH· · ·BrCN -14.60 26.19 -13.41 -3.14 -5.70 -10.66

Me3SiH· · · ICF3 -15.00 28.05 -15.68 -3.08 -5.88 -11.58

Me3SiH· · ·COF2 -12.82 19.27 -14.49 -2.07 -2.70 -12.80

Me3SiH· · ·NO2F -12.38 19.09 -14.76 -1.60 -1.87 -11.52

Me3SiH· · ·HCN -10.37 16.17 -12.33 -1.69 -1.82 -10.04

Me3SiH· · ·K+ -30.28 15.19 -4.48 -24.05 -2.80 -46.42

Table S4: ALMO-EDA-II results (in kJ/mol) for the additional protonic HB complexes included in Table 1 in
the main text: (i) t-BuOH with H2O, ICN, COF2, and HCN; (ii) H2S· · ·H2O; and (iii) t-BuSH with H2O, ICN,
COF2, and HCN. The calculations were performed at the ωB97X-V/def2-TZVPPD // ωB97X-V/def2-SVPD level
of theory. For each complex, the chemical species before and after the“· · · ” correspond to the proton donor and
acceptor, respectively.

System ELEC PAULI DISP POL CT Total

t-BuOH· · ·OH2 -34.85 36.17 -10.31 -5.51 -7.33 -21.83

t-BuOH· · · ICN -24.62 27.18 -10.74 -4.78 -5.54 -18.49

t-BuOH· · ·COF2 -17.18 19.70 -8.91 -3.13 -3.52 -13.04

t-BuOH· · ·HCN -23.60 25.20 -9.83 -4.20 -5.17 -17.60

HSH· · ·OH2 -18.04 19.36 -6.04 -2.81 -3.76 -11.29

t-BuSH· · ·OH2 -16.32 19.70 -9.91 -2.61 -2.97 -12.12

t-BuSH· · · ICN -12.55 16.94 -10.49 -2.53 -2.53 -11.16

t-BuSH· · ·COF2 -8.32 12.45 -9.58 -1.18 -1.59 -8.22

t-BuSH· · ·HCN -11.74 15.75 -9.88 -2.26 -2.26 -10.39

Table S5: Comparison of ALMO-EDA results calculated using B3LYP-D3(BJ) and the plain B3LYP functional
for three hydridic HB complexes. The results for “B3LYP-D3(BJ)” and “B3LYP” were calculated using the same
geometries as in the main manuscript (optimized using ωB97X-V/def2-SVPD), whereas the “B3LYP//B3LYP”
results were calculated using geometries reoptimized at the B3LYP/def2-SVPD level.

System Method ELEC PAULI DISP POL CT Total

Me3SiH· · · ICN
B3LYP-D3(BJ) -21.98 37.79 -18.96 -5.44 -12.48 -21.07

B3LYP -21.98 37.79 -4.23 -5.44 -12.48 -6.35

B3LYP//B3LYP -20.41 32.89 -4.02 -4.74 -13.21 -9.50

Me3SiH· · ·COF2

B3LYP-D3(BJ) -13.39 21.42 -14.69 -1.95 -3.76 -12.37

B3LYP -13.39 21.42 -2.39 -1.95 -3.76 -0.07

B3LYP//B3LYP -8.32 9.80 -0.82 -1.23 -2.19 -2.76

Me3SiH· · ·HCN

B3LYP-D3(BJ) -9.86 15.45 -12.71 -1.49 -2.43 -11.04

B3LYP -9.86 15.45 -2.30 -1.49 -2.43 -0.62

B3LYP//B3LYP -8.46 10.85 -1.76 -2.38 -4.43 -6.19
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Table S6: Adiabatic ALMO-EDA results for protonic and hydridic HB complexes investigated in this work at
the ωB97X-V/def2-SVPD level. The X−H bond lengths (rXH, in Å) and stretching frequencies (νXH, in cm−1)
calculated on the frozen, polarized, and fully relaxed surfaces are reported.a A scaling factor 0.954 was applied to
the harmonic frequencies. For the water dimer, the frequency of the symmetric O−H stretch of the proton-donor
H2O is reported.

Frozen Polarized Fully relaxed

System rXH (Å) νXH (cm−1) rXH (Å) νXH (cm−1) rXH (Å) νXH (cm−1)

HOH· · ·OH2 0.96386 3693.4 0.96501 3686.1 0.97012 3587.4

CF3H· · ·H2O 1.09740 3069.5 1.09743 3067.9 1.09843 3048.1

Me3SiH· · · ICN 1.50567 2078.7 1.50695 2072.9 1.51164 2044.4

Me3SiH· · ·BrCN 1.50431 2085.6 1.50508 2081.0 1.50722 2067.1

Me3SiH· · · ICF3 1.50371 2088.6 1.50446 2084.8 1.50728 2064.3

Me3SiH· · ·COF2 1.50387 2088.0 1.50441 2087.0 1.50502 2082.7

Me3SiH· · ·NO2F 1.50291 2095.0 1.50325 2094.6 1.50276 2097.4

Me3SiH· · ·HCN 1.50390 2086.0 1.50459 2082.2 1.50498 2079.4

Me3SiH· · ·K+ 1.52215 2008.8 1.53193 1992.6 1.53337 1995.6

a Bond lengths and scaled harmonic frequencies for the monomers: H2O: rOH = 0.96255 Å, νOH = 3695.5 cm−1; CF3H:
rCH = 1.09998 Å, νCH = 3023.3 cm−1; Me3SiH: rSiH = 1.49988 Å, νOH = 2107.0 cm−1.
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Figure S1: Comparison of the ALMO-EDA-II results obtained using the ωB97X-V, ωB97X-D3(BJ), and B3LYP-
D3(BJ) functionals for (i) the H2O dimer; (ii) Me3SiH· · · ICN; (iii) Me3SiH· · ·COF2; and (iv) Me3SiH· · ·HCN. The
def2-TZVPPD basis set was used for all the calculations.
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POL COVPs CT COVPs

CF3H⋯H2O

Me3SiH⋯BrCN

Me3SiH⋯NO2F

Me3SiH⋯HCN

−2.5 kJ/mol 
(80%)

−1.7 kJ/mol 
(61%)

−3.1 kJ/mol 
(69%)

−0.81 kJ/mol 
(59%)

−0.72 kJ/mol 
(41%)

−0.68 kJ/mol 
(41%) −0.67 kJ/mol 

(40%)

t-BuOH⋯H2O

t-BuSH⋯H2O

−1.2 kJ/mol 
(42%)

−2.3 kJ/mol 
(43%)

−6.5 kJ/mol 
(88%)

−1.0 kJ/mol 
(39%)

−2.2 kJ/mol 
(73%)

−1.9 kJ/mol 
(65%)

−3.6 kJ/mol 
(68%)

Me3SiH⋯ICF3

Me3SiH⋯K+

−18.3 kJ/mol 
(69%)

−2.6 kJ/mol 
(69%)

Figure S2: Dominant complementary occupied-virtual pairs (COVPs) for polarization and charge transfer of
additional protonic and hydridic HB complexes investigated in this work. Within each pair, the solid and meshed
contour surfaces represent the occupied and virtual orbitals, respectively. The energetic contribution associated with
each COVP is reported in kJ/mol, with its percentage contribution to the total POL or CT energy shown in the
parentheses. The COVPs were generated from ALMO-based POL and CT analyses at the ωB97X-V/def2-TZVPPD
level and plotted using a contour isovalue of 0.04 Å−3.
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Figure S3: Optimized geometries (at the ωB97X-V/def2-SVPD level) of the t-BuOH and t-BuSH complexes with
H2O, ICN, COF2, and HCN.
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Figure S4: Adiabatic EDA results calculated using B3LYP-D3(BJ)/def2-SVPD. The calculated harmonic frequencies
were scaled by a factor of 0.964.25 The other details are the same as in Fig. 3 of the main paper.
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