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Particle dimensions 

Table S1. Dimensions of the particles as determined in our previous work.1 

Dimension Mean Mode 

Length 120.7 nm 116 nm 

Height 10.7 nm 
12.5 nm 

Width 12.7 nm 

We adapted the values of the modes of the distributions in this work, as the number 

average dimensions of the particles are more representative in this study. 

 

Reproducibility of titration experiments 

 

Figure S1. Reproducibility of the titration experiments. Larger discrepancies arise when 

the analyte volume changes significantly between experiments, as the dissociation 

equilibria depend on concentrations. Based on our experiments, this requires 

discrepancies larger than 5% (25mL), which can be actively avoided if necessary. 
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Titration of dispersed CNC vs modified pulp 

 

Figure S2. There are only slight discrepancies observable between dispersed CNC and 

modified pulp, suggesting that the diffusion of the particles has a negligible influence 

compared to the dissociation interactions, which in turn appear not to be dictated by the 

macroscopic order but the structure of the modified elemental fibrils. The green and 

blue curves are the same as in Figure 9 (1.0 mM and 2.2 mM Cl- background 

electrolyte). 
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Linearization analysis of conductometric titration curves of 

dissolved and immobilized phosphate 

 

Figure S3. The analysis of the conductometric titration curve of phosphate surface 

groups on pCNC by linearization yields intersection points of individual segments that 

do not correspond to the equivalence points. 

 

Dissociation constant of disodium hydrogen phosphate 

The dissociation constant of disodium hydrogen phosphate was estimated by 

comparing the reaction to the dissociation of sodium dihydrogen phosphate (see, 

Figure S4). The foundation for this estimate is the following consideration. 
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Figure S4. Dissociation reactions of interest of sodium hydrogen phosphates. 

In both dissociation reactions characterized by 𝐾𝑑1 and 𝐾𝑑3, one sodium ion is 

abstracted from the phosphate moiety. The difference is the charge of the phosphate 

moiety, given that the associated sodium ion is bound by an ionic bond, whereas the 

proton is bound by a covalent bond. Therefore, the electron density of the sodium 

phosphate moiety is notably higher compared to the hydrogen phosphate equivalent. 

This in turn influences the interaction of phosphate moiety and the ion dissociating ion in 

that it is easier to remove a sodium ion from mostly covalent hydrogen phosphate than 

partially ionic sodium phosphate. The same phenomenon is illustrated by the protolysis 

of fully protonated phosphoric acid and sodium dihydrogen phosphate. While the first 

pKa value of phosphoric acid is known to be 2.20, the perceived pKa value of sodium 

dihydrogen phosphate can be calculated as 5.32. The reduced acidity illustrates the 

stronger interactions of cation and partially ionic phosphate moiety. 

Assuming that the free energy of the dissociation reactions of protons and sodium 

ions changes by the same relative amount, we can use the known decrease in acidity of 

the protolysis analogues to estimate the decrease in electrolytic strength for the 

dissociation reactions of sodium ions as described in equations (S1), (S2) and (S3). 

 ∆𝐺𝑑3 = ∆𝐺𝑑1 ∙
∆𝐺𝑎6
∆𝐺𝑎1

 (S1) 



 7 

 

−𝑅𝑇 ln𝐾𝑑3 = −𝑅𝑇 ln𝐾𝑑1 ∙
−𝑅𝑇 ln𝐾𝑎6
−𝑅𝑇 ln𝐾𝑎1

 

− ln𝐾𝑑3 = −ln𝐾𝑑1 ∙
− ln𝐾𝑎6
−ln𝐾𝑎1

 

−
ln𝐾𝑑3
ln(10)

= −
ln𝐾𝑑1
ln(10)

∙
−
ln𝐾𝑎6
ln(10)

−
ln𝐾𝑎1
ln(10)

 

𝑝𝐾𝑑3 = 𝑝𝐾𝑑1 ∙
𝑝𝐾𝑎6
𝑝𝐾𝑎1

= 0.65 

(S2) 

 

𝐾𝑑3 = 0.22 

1

𝐾𝑑3
= 4.5 

(S3) 

 

This estimate is close to a previously published estimate for the sodium ion 

association to phosphate measured by the increase in acidity.2 However, those 

experiments were carried out in the presence of tetramethylammonium ions as 

background electrolyte, which were assumed not to interact with the phosphate ions. 

The foundation for the obtained association constants is the pH change caused by ionic 

interactions of the phosphate ions, enhancing protolysis.3 

 

Quantifying carbonate contaminants  

The parameters required to solve equation (25) iteratively are the rate of the 

carbonation reaction and the carbonate content of the titrant. These can be determined 

in control experiments by the reduction in conductance caused by carbonate. 
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In order to assess the carbonation reaction, we measured the ageing of a sodium 

hydroxide solution over time by monitoring the conductivity decrease. This is shown in 

Figure S5. 

 

Figure S5. Conductivity decrease of basic analyte over time. 8mL 0.1M NaOH is dosed 

into 500mL degassed Milli-Q water at 1 ml/min as per the usual experimental setup, 

after which the analyte is left stirring overnight while monitoring the conductivity. 

As the only cause of the decrease in conductance is the carbonation reaction and as 

the pH guarantees that it is in fact carbonate ions that are formed, it is possible to 

quantify the rate of carbonate formation by considering the slope of the curve as shown 

in equations (S4) and (S5). 

 

∆𝜎

∆𝑡
= 𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 (Λ𝐶𝑂32−

0 − 2Λ𝑂𝐻−
0 ) 

(S4) 

 

𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 =

∆𝜎
∆𝑡

(Λ
𝐶𝑂3

2−
0 − 2Λ𝑂𝐻−

0 )
= 2.50

𝑛𝑚𝑜𝑙

𝑠
 

(S5) 

Here, 
∆𝜎

∆𝑡
 is the conductivity decrease over time, 𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 is the time-dependent rate 

constant for the carbonation reaction. 



 9 

This reaction rate is time dependent. For our purpose, it is more convenient, to 

express the passage of time by the rate of titrant addition. This way, it is possible to 

convert the rate of carbonation into a virtual concentration of carbonate being added to 

the analyte at the same rate as the titrant. This is expressed in equation (S6). 

 

[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑎𝑖𝑟 =
𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛

𝑉𝐵
𝑡

=
𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛

0.1
𝑚𝐿
𝑚𝑖𝑛

= 𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 ∙ 600000
𝑠

𝐿

= 1.50
𝑚𝑚𝑜𝑙

𝐿
 

(S6) 

Here, 
𝑉𝐵

𝑡
 is the dosing speed of the titrant during the titration. 

If we assume that the carbonation reaction is occurring at this same speed during the 

dosing of the base into the degassed MilliQ water, it enables us to quantify the amount 

of carbonate contamination in the sodium hydroxide titrant solution according to 

equations (S7) and (S8). 

 

Λ𝑏𝑎𝑠𝑒 =
∆𝜎

∆𝑐𝐵
=
∆𝜎𝑛𝑜𝑟𝑚
∆𝑛𝐵

= Λ𝑁𝑎+ + (1 − 2𝛼)Λ𝑂𝐻− + 𝛼Λ𝐶𝑂32−  

= Λ𝑁𝑎+ + (1 − 2
[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑁𝑎𝑂𝐻 + [𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑎𝑖𝑟

[𝑏𝑎𝑠𝑒]
)Λ𝑂𝐻−

+
[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑁𝑎𝑂𝐻 + [𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑎𝑖𝑟

[𝑏𝑎𝑠𝑒]
Λ𝐶𝑂32−  

(S7) 

 

[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑁𝑎𝑂𝐻 =
Λ𝑏𝑎𝑠𝑒 − Λ𝑁𝑎+

0 − Λ𝑂𝐻−
0

Λ
𝐶𝑂3

2−
0 − 2Λ𝑂𝐻−

0
[𝑏𝑎𝑠𝑒] − [𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑎𝑖𝑟

= 2.50
𝑚𝑚𝑜𝑙

𝐿
 

(S8) 

Here, Λ𝑏𝑎𝑠𝑒  is the molar limiting conductivity of the base,  

∆𝜎 is the difference in conductivity caused by changes in base concentration  

∆𝑐𝐵, while, analogously, ∆𝜎𝑛𝑜𝑟𝑚 is the conductance decrease in response to changes in 
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titrant amount ∆𝑛𝐵. 𝛼 is the titer for carbonate in the system, which is the ratio of 

carbonate concentration versus assumed concentration of the base. [𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑁𝑎𝑂𝐻 

and [𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑎𝑖𝑟 are the concentrations of carbonate perceived in the titrant and in 

the air, entering the analyte in the timeframe of the addition of one increment of base, 

and [𝑏𝑎𝑠𝑒] is the concentration of the titrant. 

Both sources of carbonate can be expressed as contained in the titrant and therefore 

quantified along with the titrant along the course of the titration. 

 

Details on the composition of the simulated experiments 

Table S2. Compositions of the simulated titration experiments. 

    HCl NaCl pCNC 
initial 
mass 

background ionic 
strength (mmol) 

Titer of 
NaOH 
solution 

0.4 mM Cl- 

g 1.97 0 0.2882 509.61 

0.197 1 mmol 0.197 0 0.2882   

eq 0.7 0 1   

1.0 mM Cl- 

g 4.97 0 0.2700 495.41 

0.497 1 mmol 0.497 0 0.2700   

eq 1.8 0 1   

1.6 mM Cl- 

g 5.63 0.5 0.2838 505.77 

0.813 1 mmol 0.563 0.25 0.2838   

eq 2.0 0.9 1   

2.2 mM Cl- 

g 4.97 1.52 0.2998 568.10 

1.257 1 mmol 0.497 0.76 0.2998   

eq 1.7 2.5 1   
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Triple 
amount 
CNC, 

1.6 mM Cl- 

g 8.18 0 0.8656 519.00 

0.818 0.95a) mmol 0.818 0 0.8656   

eq 0.9 0 1   

Ionic 
phosphate, 
1.6 mM Cl- 

g 8.56 0 0.8560 525.90 0.856 + nearly 
quantitiatively 
dissociated 

sodium 
dihydrogen 
phosphate 

0.95a) 
mmol 0.856 0 0.8560   

eq 1 0 1   

a) When absent-mindedly diluting 1M NaOH solution by weight instead of by volume, 

the slightly elevated density of 1M NaOH causes a discrepancy in the final 

concentration of 5%. 

 

 

Appendix A: Estimation of the counterion condensation 

equilibrium constant 

As discussed above and shown in Figure 1, we assume that the electrostatic surface 

energy, which inhibits the dissociation of the surface groups, is an additive component 

of the overall reaction free energy. Consequently, the dissociation equilibria are shifted 

towards association, which can be expressed in an updated equilibrium constant 

according to equation (A1).4 

 𝐾𝑛𝑒𝑤 = 𝑒
−
Δ𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛

0 +𝑈
𝑘𝐵𝑇 = 𝑒

−
Δ𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛

0

𝑘𝐵𝑇 ∙ 𝑒
−
𝑈
𝑘𝐵𝑇 = 𝐾𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ∙ 𝐾𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛  (A1) 

We are assuming here, that the free energy resulting from the dissociation reaction of 

the surface groups, Δ𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
0 , remains constant, but that it is the external effect of 

the surrounding electrostatic surface energy, that accounts for the shift in the reaction 
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equilibrium. This is not entirely factual. In the colloidal system, the entropy gain will be 

reduced on account of ions being trapped in the electrostatic double layer. As for the 

reaction enthalpy, on the back of NMR studies showing no significant shift of the 

phosphate signal of phosphate half-esters and orthophosphate,1, 5 we can assume that 

the shielding of the central phosphorous atom of surface groups and that of phosphate 

ions are nearly equal, which then translates to the dissociation constants being nearly 

equal. Also, there is precedent for the separate contemplation of the ionic interactions 

between the two dissociating charges and the electrostatic background.6, 7 

Still, this methodology is at odds with Manning’s previous work8. There, reaction 

enthalpy and electrostatic surface contributions are contracted to give an electric free 

energy, which is distinct from a second energetic influence: translational entropy of the 

dissociated ions. Manning’s ab initio methodology, however, still relies on mathematical 

simplifications in order to be readily computed and only takes into account a single ion 

species dissociating from the polyelectrolyte. Given our application, we need to account 

for at least two ion species in interconnected dissociation equilibria. Therefore, our 

semi-empirical approach sacrifices a small degree of thermodynamical accuracy for far 

easier computation and significantly increased adaptability. 

In order to quantify the correction factor to the equilibrium constants in equation (2), it 

is necessary to describe the electrostatic potential of the surrounding charges. In the 

presence of background electrolyte, according to Debye and Hückel, the potential of a 

point described with equation (A2).7 The key parameter here is the screening 

parameter, the inverse of the Debye length, which is calculated according to equation 

(A3).  
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 𝜑 =
𝑁𝑞𝑞𝑒
4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)

𝑒−𝜅𝑑

𝑑
 (A2) 

 𝜅 =
1

𝜆𝐷
= √

2𝑞𝑒2𝐼

𝜀0𝜀𝑟𝑘𝐵𝑇
 (A3) 

Here, 𝜑 is the electrostatic potential, 𝑁𝑞 is the number of elemental charges of an ion 

with radius 𝑟𝑖𝑜𝑛, that a probing charge at a distance 𝑑 interacts with, and 𝜅 is the Debye 

screening parameter. 

The screening parameter is the inverse of the Debye Length 𝜆𝐷, which depends on 

the ionic strenght 𝐼 of the solution. 

Such a potential affects the electrostatic potential energy U between a symbolic, 

probing point charge and the charge generating the potential according to equation 

(A4): 

 𝑈 =
1

2
𝑞𝑝𝑟𝑜𝑏𝑒

𝑁𝑞𝑞𝑒
4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)

𝑒−𝜅𝑑

𝑑
 (A4) 

The overall electrostatic potential energy of a single charge originating from multiple 

nearby charges is obtained by summing up all individual contributions.  

For our purpose, we need to determine the electrostatic energy U in equation (2), 

which describes the additional electrostatic energy that inhibits the dissociation process. 

This energy is caused by all nearby surface charges except for the one charge that is 

part of the dissociating ion pair. As such, we need to consider the sum of the screened 

potential contributions of all surface charges on the particle, which are causing an 

electrostatic potential on the screened charge of a single ion in a surface ion pair. The 

electrostatic interactions of this ion pair can be neglected, since, in equation (2), these 

interactions are described through the regular ion dissociation constant, which we are 
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merely trying to modify. As such, the additional electrostatic energy can be calculated 

according to equation (A5): 

 

𝑈 =
1

2
∑𝑞𝑝𝑟𝑜𝑏𝑒

𝑁𝑞,𝑖𝑞𝑒
4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)

𝑒−𝜅𝑑𝑖

𝑑𝑖
𝑖

 

=
1

2

1

4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)
∑
𝑞𝑝𝑟𝑜𝑏𝑒𝑁𝑞,𝑖𝑞𝑒𝑒

−𝜅𝑑𝑖

𝑑𝑖
𝑖

 

=
1

2

𝑞𝑒
2

4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)
∑
𝑁𝑞,𝑖𝑒

−𝜅𝑑𝑖

𝑑𝑖
𝑖

 

(A5) 

This description of the electric potential energy depends on the distance of the 

considered charges. This is not trivial, as the number of charges is varying along the 

titration process and the distances between the charges is hard to assess given the 

rather complicated arrangement of the functional groups along cellulose nanocrystals. 

Therefore, we consider several simplifications: We will consider the CNC to have 

cylindrical shape and symmetry, as well as a uniform surface charge 𝜎 located on the 

mantle area, which can be calculated via equation (A6): 

 

𝜎𝑆 =
𝑁𝑞
𝐴𝑃
=

𝑁𝑞
2𝜋𝑟𝑝𝑙

 

=
𝑁𝐴𝜎𝑚
2𝜋𝑟𝑝𝑙

𝑚𝑝 

=
𝑁𝐴𝜎𝑚
2𝜋𝑟𝑝𝑙

𝜌𝑉𝑝 

=
𝑁𝐴𝜎𝑚
2𝜋𝑟𝑝𝑙

𝜌𝜋𝑟𝑝
2𝑙 

=
𝑁𝐴𝑞𝑒𝜎𝑚𝜌𝑟𝑝

2
 

(A6) 
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Here, 𝑄 is the total charge of the particle, 𝐴𝑃 is the surface area of the particle that we 

simplify to the mantle area of the cylindrical particle, 𝑟𝑝 is the particle radius, 𝑙 is the 

particle length, 𝜎𝑚 is specific charge density of the cellulose particles and 𝜌 is the 

density of cellulose. 

With this assumption of a uniform charge density in mind, the potential of a single 

point on the surface of the cylindrical particle against the rest of the particle surface 

relies on the area of the considered segments, which determines the contained charge, 

and their Euclidian distance, which determines the magnitude of the interaction. 

In order to calculate this, we describe the cylindrical particle with respect to a single 

point on its surface, which is located in the origin of a cartesian coordinate system. As 

such, the z-axis describes the length of the cylinder and lies on its surface, while the x-

axis aligns with the diameter of the cylinder as shown in Figure A1. 

 

Figure A1. Orientation of the cylindrical particle in the coordinate system chosen to 

describe the electrostatic interactions of an elementary charge located at the origin 

(left). The electrostatic interactions are evaluated based on the distance d of surface 

area elements to the considered charge located at the origin (right).  
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The Euclidian distance of any point from the origin of this coordinate system can be 

described by 3-dimensional Pythagorean deliberations as follows: 

Considering the x-y-plane, equation (A7) expresses the y-coordinate of the cylinder 

surface as a function of the particle radius and x-coordinate, while equation (A8) 

describes the two-dimensional Euclidean distance 𝑑𝑥𝑦 of every point from the z-axis: 

 

𝑟𝑝
2 = (𝑥 − 𝑟𝑝)

2
+ 𝑦2 

𝑦 = √𝑟𝑝2 − (𝑥 − 𝑟𝑝)
2
= √𝑟𝑝2 − (𝑟𝑝2 − 2𝑥𝑟𝑝 + 𝑥2) = √2𝑥𝑟𝑝 − 𝑥2 

(A7) 

 𝑑𝑥𝑦 = √𝑥2 + 𝑦2 = √𝑥2 + 2𝑥𝑟𝑝 − 𝑥2 = √2𝑥𝑟𝑝 (A8) 

Equation (A8) can be extended to describe the 3-dimensional Euclidean distance 𝑑3𝐷 

of any surface point from the origin of our coordinate system according to equation 

(A9). 

 𝑑3𝐷 = √𝑑𝑥𝑦
2 + 𝑧2 = √2𝑥𝑟𝑝 + 𝑧2 (A9) 

 

In order to assess the electrostatic potential contribution of a point on the cylinder 

surface at a distance 𝑑3𝐷, we now need to consider the charge in the respective point. 

The charge is given by the product of the surface charge density 𝜎 and area increment 

of the point 𝑖 as follows in equation (A10). 

 𝑁𝑞,𝑖𝑞𝑒 = 𝜎𝑆 ∙ 𝑑𝐴𝑖 (A10) 
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with 

𝑑𝐴 = 𝑑𝑧𝑑𝑎𝑟𝑐 = 𝑑𝑧√𝑑𝑥2 + 𝑑𝑦2 = 𝑑𝑧√𝑑𝑥2 + (
𝑑

𝑑𝑥
(√2𝑥𝑟𝑝 − 𝑥2) 𝑑𝑥)

2

= 𝑑𝑧𝑑𝑥√1 + (
𝑥 − 𝑟𝑝

√2𝑥𝑟𝑝 − 𝑥2
)

2

= 𝑑𝑧𝑑𝑥√1 +
(𝑥 − 𝑟𝑝)

2

2𝑥𝑟𝑝 − 𝑥2

= 𝑑𝑧𝑑𝑥√
2𝑥𝑟𝑝 − 𝑥

2 + (𝑥 − 𝑟𝑝)
2

2𝑥𝑟𝑝 − 𝑥2

= 𝑑𝑧𝑑𝑥√
𝑟𝑝2 + 2𝑥𝑟𝑝 − 2𝑥𝑟𝑝 + 𝑥2 − 𝑥2

2𝑥𝑟𝑝 − 𝑥2
=

𝑟𝑝

√2𝑥𝑟𝑝 − 𝑥2
𝑑𝑧𝑑𝑥 

(A11) 

By considering the infinitesimal area increments described in equation (A11), the 

sum in equation ((A5) can be transformed into an integral. The boundaries for the 

integration in x-direction are the boundaries of the considered charge and the particle, 

respectively, with 𝑥𝑚𝑖𝑛 = 𝑥𝑐ℎ and 𝑥𝑚𝑎𝑥 = 2𝑟𝑝. In z-direction two separate integrations 

can be performed, both originating at 𝑧𝑚𝑖𝑛 = 𝑧𝑐ℎ and proceeding to either end of the 

particle at 𝑧𝑚𝑎𝑥,1 = 𝑧′’ and 𝑧𝑚𝑎𝑥,2 = (𝑙 − 𝑧
′).  

The boundary of the considered charge can be derived from the charge density. For 

the sake of simplicity, given the choice of a cartesian coordinate system, we assume the 

shape of the charge to be a square in the yz-plane, with the center of the square located 

at the origin of the coordinate system and spanning the area 𝐴𝑐ℎ. This means that both 

𝑥𝑐ℎ and 𝑧𝑐ℎ can be calculated according to the following equations (A12), (A13) and 

(A14). 

 𝐴𝑐ℎ =
1

𝜎𝑆
=

2

𝑞𝑒𝜎𝑚𝜌𝑟𝑝
= (2𝑧𝑐ℎ)

2 = (2𝑦𝑐ℎ)
2 (A12) 
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 𝑧𝑐ℎ = √
1

2𝑞𝑒𝜎𝑚𝜌𝑟𝑝
 (A13) 

(From 

above:) 
𝑦 = √2𝑥𝑟𝑝 − 𝑥2 ⇔ 𝑥 = 𝑟𝑝 − √𝑟𝑝2 − 𝑦2 (A7) 

 𝑥𝑐ℎ = 𝑟𝑝 − √𝑟𝑝
2 −

1

2𝑞𝑒𝜎𝑚𝜌𝑟𝑝
 (A14) 

For the sake of simplicity, however, we will assume that the boundary of the charge is 

found at 𝑧𝑐ℎ = 3 Å from the center, which corresponds to the hydration radius of a 

phosphate ion. This saves time during the calculation by omitting one recursive 

calculation at the core of our model while still being reasonably accurate. 

Two more aspects need to be considered. Firstly, given the non-negative output of 

square root operations, only the top half of the cylinder is considered by equation (A7). 

The described integrations return a surface area for the top half of the cylinder that 

satisfies y>0. The second half of the cylinder is considered through symmetry by adding 

a factor of 2. 

Secondly and lastly, the electrical energy between the charge in the origin of our 

calculations and the charged surface scales with the magnitude of the surrounding 

charges and their distance, as discussed above and described in equation (3). We 

have described how to assess the distance of any point on the particle surface in 

equation (A9) and how to assess the charge of a given surface area increment on the 

basis of the surface charge density in equations (A10) and (A11). However, by 

describing the area increments in equation (A11) as a function of increments in x and 
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z, we consider area increments of varying size and therefore varying charge at a given 

distance 𝑑3𝐷 from the origin. This is illustrated in Figure A2.  

 

Figure A2. Discrepancy between assumed and actual location of the considered 

surface charge in an area increment at 𝑥 ≪ 𝑟 and parameters used to define the 

orthogonal component 𝑑𝑎𝑟𝑐⊥. 

Especially at 𝑥 ≪ 𝑟, the calculated change in arc length 𝑑𝑎𝑟𝑐 for an increment in x-

direction is similar to the change in distance from the origin 𝑑𝑑𝑥𝑦. This means that the 

comparison between charge amount on the surface and distance from the origin as 

required by equation (3) is not accurately reflected in our deliberations. Instead, given 

the choice of cartesian coordinates, we overestimate the charge close to the origin in 

equation (A11) by considering larger surface area increments. In order to rectify this 

misconception, we consider the orthogonal component of the arc length instead, which 

translates to an orthogonal component of the charge, that is accurately scaled in its 

distance from the origin. This requires an amendment according to equation (A15). 

 

𝑑𝑎𝑟𝑐⊥ = 𝑑𝑎𝑟𝑐
𝑑𝑥𝑦
2𝑟𝑝

 

= 𝑑𝑎𝑟𝑐
√2𝑥𝑟𝑝

2𝑟𝑝
 

(A15) 
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=
𝑟𝑝

√2𝑥𝑟𝑝 − 𝑥2
𝑑𝑥
√2𝑥𝑟𝑝

2𝑟𝑝
 

= √
𝑥

2𝑟𝑝

𝑟𝑝

√2𝑥𝑟𝑝 − 𝑥2
𝑑𝑥 

= √
𝑟𝑝

4𝑟𝑝 − 2𝑥
𝑑𝑥 

 

As such, combining equations (A5) to (A15) yields equation (A16), which describes 

the electrostatic potential energy for a charge located at a distance z = z’ from either 

end of the particle. 

 

𝑈𝑧′

=
1

2

𝑞𝑒
2

4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)
(∫ ∫ 2√

𝑟𝑝
4𝑟𝑝 − 2𝑥

𝜎𝑆

√2𝑥𝑟𝑝 + 𝑧2
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑧′

0

+  ∫ ∫ 2√
𝑟𝑝

4𝑟𝑝 − 2𝑥

𝜎𝑆

√2𝑥𝑟𝑝 + 𝑧2
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑙−𝑧′

0

− 2∫ ∫ 2√
𝑟𝑝

4𝑟𝑝 − 2𝑥

𝜎

√2𝑥𝑟𝑝 + 𝑧2
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
𝑥𝑐ℎ

0

𝑧𝑐ℎ

0

) 

=
𝑞𝑒
2𝜎𝑆

4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)
(∫ ∫ √

2𝑟𝑝
2𝑟𝑝 − 𝑥

1

√2𝑥𝑟𝑝 + 𝑧2
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑧′

0

+  ∫ ∫ √
2𝑟𝑝

2𝑟𝑝 − 𝑥

1

√2𝑥𝑟𝑝 + 𝑧2
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑙−𝑧′

0

− 2∫ ∫ √
2𝑟𝑝

2𝑟𝑝 − 𝑥

1

√2𝑥𝑟𝑝 + 𝑧
2
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
𝑥𝑐ℎ

0

𝑧𝑐ℎ

0

) 

(A16) 
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=
𝑞𝑒
2𝜎𝑆

4𝜋𝜀0𝜀𝑟

𝑒𝜅𝑟𝑖𝑜𝑛

(1 + 𝜅𝑟𝑖𝑜𝑛)
(∫ ∫ √

2𝑟𝑝

(2𝑟𝑝 − 𝑥)(2𝑥𝑟𝑝 + 𝑧2)
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑧′

0

+  ∫ ∫ √
2𝑟𝑝

(2𝑟𝑝 − 𝑥)(2𝑥𝑟𝑝 + 𝑧2)
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑙−𝑧′

0

− 2∫ ∫ √
2𝑟𝑝

(2𝑟𝑝 − 𝑥)(2𝑥𝑟𝑝 + 𝑧2)
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
𝑥𝑐ℎ

0

𝑧𝑐ℎ

0

) 

At this point, in order to abbreviate the integral term, we define equation (A17). 

 

𝛹(𝑧′) = ∫ ∫ √
2𝑟𝑝

(2𝑟𝑝 − 𝑥)(2𝑥𝑟𝑝 + 𝑧2)
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑧′

0

+  ∫ ∫ √
2𝑟𝑝

(2𝑟𝑝 − 𝑥)(2𝑥𝑟𝑝 + 𝑧2)
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
2𝑟𝑝

0

𝑙−𝑧′

0

− 2∫ ∫ √
2𝑟𝑝

(2𝑟𝑝 − 𝑥)(2𝑥𝑟𝑝 + 𝑧2)
𝑒
−𝜅√2𝑥𝑟𝑝+𝑧

2

𝑑𝑥𝑑𝑧
𝑥𝑐ℎ

0

𝑧𝑐ℎ

0

 

(A17) 

Expressing equation (A16 in thermal units yields equation (A18: 

 

𝑈𝑧′

𝑘𝐵𝑇
=

𝑞𝑒
2

4𝜋𝜀0𝜀𝑟𝑘𝐵𝑇
𝜎𝑆 ∙ Ψ(𝑧

′) 

= 𝜆𝐵𝜎 ∙ Ψ(𝑧
′) 

(A18) 

The integral term abbreviated as Ψ(𝑧′) contains the information about the magnitude 

of the screened charges and their distance and can therefore be considered as a 

geometric normalization factor. Meanwhile, the product of Bjerrum length and charge 

density echoes Manning’s deliberations. 

The electrostatic potential energy 𝑈𝑧′ of a single charge varies as a function of that 

charges position on the nanocrystal z’. Charges located at either end of the particle are 
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surrounded by fewer neighboring charges than those located in the middle of the 

particle. This variation in distance causes a discrepancy in the electrostatic potential 

energy, resulting in a maximum for those charges located exactly in the middle of the 

particle, as shown in Figure A3. As far as we can tell, this effect is considered in works 

on charge renormalization through the geometric shape and symmetry of the colloidal 

particles when applying the Poisson-Boltzmann equation.9, 10 In that formalism, splitting 

the contributions of a single groups against the remaining surface is not necessary. 

Nevertheless, it might be the combination of both ion condensation and the screening 

effects of ions in the double layer, rather than just the former effect alone, that makes 

charge renormalization necessary in the first place. 

  

Figure A3. Absolute (left) and relative (right) values for 𝛹(𝑧′) 𝑜𝑣𝑒𝑟 𝑧′, for 17 evenly 

spaced points along the titration curve. Both absolute and relative values vary in 

response to the ionic strength, which rises quickly after the second equivalence point 

and promotes screening of the surface charge. 

The shape of the curves in Figure A3 illustrates that, while the absolute values of the 

charge change, the relative overall potential remains the same. Also, the potential drops 
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off only in the last 20nm of the particle at either end, which illustrates that the 

contributions of charges located more than 25nm from the considered origin have no 

further effect on the local surface potential. As such, the center section of the particles 

can be considered as having a uniform, cylindrical surface potential. For our model, to 

avoid having to calculate this integral for every value of z’, we will consider the average 

value for the electrostatic potential energy across all z’, which amounts to 94.5% of the 

maximum value for 𝑧’ =
𝑙

2
. 

This means that our counterion condensation correction to the conventional 

equilibrium constant can be expressed according to equation (A19). 

 
𝐾𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑒

−
𝑈
𝑘𝐵𝑇 = 𝑒

−
𝜆𝐵

(
1
𝑟𝑝

𝐴
𝑁𝑖
)
∙Ψ(𝑧′)

 
(A19) 

Finally, by combining equations (2) and (A19), we can describe the effective 

dissociation constants of the surface groups quantitatively. 

 

Appendix B: Matrix expression of the equilibrium 

concentrations 

The individual concentrations of the 15 relevant species in our system are fully 

defined by the set of 15 equations (see, equations (10) to (24)) defined above. This 

becomes more evident and far easier to handle by expressing the set of individual 

equations in a single matrix equation.  

Obviously, while the mass and charge balances in equations (10) to (13) and (23), 

respectively, are linear, whereas the remaining equations (14) to (22) and (24), which 

contain the information on the dissociation equilibria are not linear. This illustrates that 
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the system cannot be solved by Gaussian elimination, but, instead, requires numerical 

approaches. Therefore, it is useful to consider logarithmic concentrations instead of 

absolute values, which ensures that the solution provides no negative values as 

concentrations. The more significant benefit of the logarithmic form is that 10 out of 15 

expressions, containing the information about the equilibrium constants, become linear, 

as shown in equation (B1). 

(

 
 
 
 
 
 
 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 −1)

 
 
 
 
 
 
 

×

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑙𝑛[𝐻+]

𝑙𝑛[𝑁𝑎+]

𝑙𝑛[𝐶𝑙−]

𝑙𝑛[𝑂𝐻−]

𝑙𝑛[𝐻2𝑅𝑃𝑂4]

𝑙𝑛[𝐻𝑅𝑃𝑂4
−]

𝑙𝑛[𝑅𝑃𝑂4
2−]

𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4]

𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]

𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4]

𝑙𝑛[𝐶𝑂2,𝑎𝑞]

𝑙𝑛[𝐻𝐶𝑂3
−]

𝑙𝑛[𝐶𝑂3
2−]

𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3]

𝑙𝑛[𝑁𝑎𝐶𝑂3
−] )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 

𝑙𝑛 𝐾𝑤
𝑙𝑛 𝐾𝑎1 + 𝑙𝑛 𝐾𝑐𝑐
𝑙𝑛 𝐾𝑎2 + 𝑙𝑛 𝐾𝑐𝑐
𝑙𝑛 𝐾𝑑1 + 𝑙𝑛𝐾𝑐𝑐
𝑙𝑛 𝐾𝑑2 + 𝑙𝑛𝐾𝑐𝑐
𝑙𝑛 𝐾𝑑3 + 𝑙𝑛𝐾𝑐𝑐

𝑙𝑛 𝐾𝑎4
𝑙𝑛 𝐾𝑎5
𝑙𝑛 𝐾𝑑4
𝑙𝑛 𝐾𝑑5 )

 
 
 
 
 
 
 
 

 (B1) 

For the remaining 5 mass and charge balances, a redundant dependence on the 

logarithmic concentrations can be introduced by expressing the real concentrations as 

exponentials of their own logarithms and by multiplying with the expression 
ln[𝑖]

ln[𝑖]
= 1. The 

resulting expanded expressions are shown in equations (B2), (B3), (B4), (B5) and 

(B6). 

[Σ(𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒)] =
𝑒𝑙𝑛[𝐶𝑙

−]

𝑙𝑛[𝐶𝑙−]
∙ 𝑙𝑛[𝐶𝑙−] (B2) 

[Σ(𝑆𝑜𝑑𝑖𝑢𝑚)] =
𝑒𝑙𝑛[𝑁𝑎

+]

𝑙𝑛[𝑁𝑎+]
∙ 𝑙𝑛[𝑁𝑎+] +

𝑒 𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4]

𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4]
∙ 𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4] +

𝑒𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]

𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]
∙ 𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4

−] 

+2
𝑒𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4]

𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4]
∙ 𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4] +

𝑒𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3]

𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3]
∙ 𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3] +

𝑒𝑙𝑛[𝑁𝑎𝐶𝑂3
−]

𝑙𝑛[𝑁𝑎𝐶𝑂3
−]
∙ 𝑙𝑛[𝑁𝑎𝐶𝑂3

−] 

(B3) 

[Σ(𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒)] =
𝑒𝑙𝑛[𝐻2𝑅𝑃𝑂4]

𝑙𝑛[𝐻2𝑅𝑃𝑂4]
∙ 𝑙𝑛[𝐻2𝑅𝑃𝑂4] +

𝑒𝑙𝑛[𝐻𝑅𝑃𝑂4
−]

𝑙𝑛[𝐻𝑅𝑃𝑂4
−]
∙ 𝑙𝑛[𝐻𝑅𝑃𝑂4

−] +
𝑒𝑙𝑛[𝑅𝑃𝑂4

2−]

𝑙𝑛[𝑅𝑃𝑂4
2−]

∙ 𝑙𝑛[𝑅𝑃𝑂4
2−] 

+
𝑒𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4]

𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4]
∙ 𝑙𝑛[𝐻𝑁𝑎𝑅𝑃𝑂4] +

𝑒𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]

𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]
∙ 𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4

−] +
𝑒 𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4]

𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4]
∙ 𝑙𝑛[𝑁𝑎2𝑅𝑃𝑂4] 

(B4) 
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[Σ(𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒)] =
𝑒 𝑙𝑛[𝐶𝑂2,𝑎𝑞]

𝑙𝑛[𝐶𝑂2,𝑎𝑞]
∙ 𝑙𝑛[𝐶𝑂2,𝑎𝑞] +

𝑒𝑙𝑛[𝐻𝐶𝑂3
−]

𝑙𝑛[𝐻𝐶𝑂3
−]
∙ 𝑙𝑛[𝐻𝐶𝑂3

−] +
𝑒𝑙𝑛[𝐶𝑂3

2−]

𝑙𝑛[𝐶𝑂3
2−]
∙ 𝑙𝑛[𝐶𝑂3

2−] 

+
𝑒 𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3]

𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3]
∙ 𝑙𝑛[𝑁𝑎𝐻𝐶𝑂3] +

𝑒𝑙𝑛[𝑁𝑎𝐶𝑂3
−]

𝑙𝑛[𝑁𝑎𝐶𝑂3
−]
∙ 𝑙𝑛[𝑁𝑎𝐶𝑂3

−] 

(B5) 

0 = (
𝑒𝑙𝑛[𝐻

+]

𝑙𝑛[𝐻+]
∙ 𝑙𝑛[𝐻+] +

𝑒 𝑙𝑛[𝑁𝑎
+]

𝑙𝑛[𝑁𝑎+]
∙ 𝑙𝑛[𝑁𝑎+]) 

−(
𝑒𝑙𝑛[𝐶𝑙

−]

𝑙𝑛[𝐶𝑙−]
∙ 𝑙𝑛[𝐶𝑙−] +

𝑒 𝑙𝑛[𝑂𝐻
−]

𝑙𝑛[𝑂𝐻−]
∙ 𝑙𝑛[𝑂𝐻−] +

𝑒 𝑙𝑛[𝐻𝑅𝑃𝑂4
−]

𝑙𝑛[𝐻𝑅𝑃𝑂4
−]
∙ 𝑙𝑛[𝐻𝑅𝑃𝑂4

−] + 2
𝑒𝑙𝑛[𝑅𝑃𝑂4

2−]

𝑙𝑛[𝑅𝑃𝑂4
2−]

∙ 𝑙𝑛[𝑅𝑃𝑂4
2−] +

𝑒𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]

𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−]

∙ 𝑙𝑛[𝑁𝑎𝑅𝑃𝑂4
−] +

𝑒𝑙𝑛[𝐻𝐶𝑂3
−]

𝑙𝑛[𝐻𝐶𝑂3
−]
∙ 𝑙𝑛[𝐻𝐶𝑂3

−] +
𝑒𝑙𝑛[𝑁𝑎𝐶𝑂3

−]

𝑙𝑛[𝑁𝑎𝐶𝑂3
−]
∙ 𝑙𝑛[𝑁𝑎𝐶𝑂3

−] + 2
𝑒𝑙𝑛[𝐶𝑂3

2−]

𝑙𝑛[𝐶𝑂3
2−]

∙ 𝑙𝑛[𝐶𝑂3
2−]) 

(B6) 

 

To apply these equations to our titrations, it must be considered, that the overall 

concentrations in equations (B2) to (B5) vary due to dilution and in the case of (B3) 

due to the active increase in total sodium concentration when sodium hydroxide is 

added to the system. These dependencies can be expressed according to equations 

(B7), (B8), (B9) and (B10). 

[Σ(𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒)] = [𝐶ℎ𝑙𝑜𝑟𝑖𝑑𝑒]0 (
𝑉0

𝑉0 + 𝑉𝐵
) = 𝑐𝐻𝐶𝑙 (

𝑉𝐻𝐶𝑙

𝑉0 + 𝑉𝐵
) + 𝑐𝑁𝑎𝐶𝑙 (

𝑉𝑁𝑎𝐶𝑙

𝑉0 + 𝑉𝐵
) (B7) 

[Σ(𝑆𝑜𝑑𝑖𝑢𝑚)] = [𝑆𝑜𝑑𝑖𝑢𝑚]0 (
𝑉0

𝑉0 + 𝑉𝐵
) + 𝑐𝐵 (

𝑉𝐵

𝑉0 + 𝑉𝐵
) = 𝑐𝑁𝑎𝐶𝑙 (

𝑉𝑁𝑎𝐶𝑙

𝑉0 + 𝑉𝐵
) + 𝜐𝜚𝑃 (

𝑚𝐶𝑁𝐶

𝑉0 + 𝑉𝐵
) + 𝑐𝐵 (

𝑉𝐵

𝑉0 + 𝑉𝐵
) (B8) 

[Σ(𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒)] = [𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒]0 (
𝑉0

𝑉0 + 𝑉𝐵
) = 𝜚𝑃 (

𝑚𝐶𝑁𝐶

𝑉0 + 𝑉𝐵
) (B9) 

[Σ(𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒)] = [𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑣𝐵 (
𝑉0

𝑉0 + 𝑉𝐵
) = (𝑐𝐶𝑂32−

𝑎𝑖𝑟 + 𝑐𝐶𝑂32−
𝑏𝑎𝑠𝑒) (

𝑉𝐵

𝑉0 + 𝑉𝐵
) (B10) 

In equations (B7), (B8), (B9) and (B10), 𝑉0 is the starting volume of the analyte 

solution and 𝑉𝐵  is the volume of added base throughout the titration. 𝑐𝐻𝐶𝑙 ,  𝑐𝑁𝑎𝐶𝑙  and 𝑐𝐵 

are the concentrations of HCl, NaCl and sodium hydroxide solutions, which are added 

to the analyte during sample preparation and titration, respectively. The volumina of HCl 

and NaCl solutions added to the analyte contribute to the starting volume 𝑉0.  𝑐𝐶𝑂32−
𝑎𝑖𝑟  and 

𝑐𝐶𝑂32−
𝑏𝑎𝑠𝑒  describe the amount of carbonate contamination present in the sodium hydroxide 

solution and entering the analyte from the air and are expressed as concentrations of 
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the sodium hydroxide solution as explained in the supplement. 𝜚𝑃 is the specific 

phosphate content (mol/kg) of the cellulose analyte, 𝜐 is the degree of neutralization of 

the phosphate groups (0 for full protonation, 2 for full deprotonation) and 𝑚𝐶𝑁𝐶 is the 

mass (kg) of cellulose phosphate in the analyte solution. 

Additionally, the value of the counterion condensation constant 𝐾𝑐𝑐 (as defined in 

equation (A19)) changes in response to the ionic strength and active surface charge. 

Therefore, while it is a constant at individual equilibrium conditions, it assumes different 

values for every datapoint along the titration curves in response to the changes in 

surface protonation and ionic strength. 

With these information, we can define the matrix M according to equation (B11) and 

a volume dependent vector K(𝑽𝑩) according to equation (B12), which enable us to 

numerically find a solution for the logarithmic concentration vector 𝑪𝒍𝒏 (see, equation 

(B13)) according to equation (25). 

 𝑪𝒍𝒏(𝑽𝑩) = 𝑴
−𝟏 × 𝑲(𝑽𝑩) (25) 
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Once obtained, it can be shown that the square matrix M has a nonzero determinant, 

which means that the calculation in equation 20 is possible, because the system we 

consider contains the necessary information to determine the variables we are 

interested in, and the matrix M is invertible. As mentioned above, analytically, this is not 

possible, but using MATLAB software, it is possible to numerically obtain solutions. 

Applying the same calculations to sodium phosphate salt standards requires three 

further modifications. Firstly, orthophosphate ions contain a third dissociable proton 

rather than a chemical bond to the particle surface. Therefore, there is another ionic 

species that requires consideration, meaning the system of equations needs to be 

expanded by equation (B14). 

 
𝐾𝑎3,𝑒𝑓𝑓 = 𝐾𝑎3

[𝑁𝑎𝑃𝑂4
−][𝐻+]

[𝐻𝑃𝑂4
2−][𝑁𝑎+]

 
(B14) 

We are assuming here, as illustrated in Figure 4, that free, tribasic orthophosphate 

ions will immediately associate with a sodium ion in the solution to form monosodium 

phosphate. Also, we are assuming that the concentration of disodium and trisodium 

phosphate ions is negligible.11 

Secondly, counterion condensation plays no role for the dissociation of ions, so the 

correction is no longer relevant here. And thirdly, given the handling of the chemicals, 

we found the simplest, most reliable standard to prepare solutions from to be sodium 

dihydrogen phosphate dihydrate, as it is nonhygroscopic and easier to handle than 

liquid phosphoric acid. Given that the salt is monobasic, it must be considered 

according to equation (B8), that the salt contains sodium, and the total amount of 

phosphate in the system is calculated by an adapted version of equation (B9)-2. 
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[Σ(𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒)] = [𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒]0 (
𝑉0

𝑉0 + 𝑉𝐵
) = 𝑐𝑁𝑎𝐻2𝑃𝑂4 (

𝑉𝑁𝑎𝐻2𝑃𝑂4
𝑉0 + 𝑉𝐵

) (B9)-2 

In equation (B9)-2, 𝑐𝑁𝑎𝐻2𝑃𝑂4  and 𝑉𝑁𝑎𝐻2𝑃𝑂4  are concentration and volume of the 

phosphate salt standard solution to be analysed as a reference. 

These changes are reflected in the matrix 𝑴𝒔𝒂𝒍𝒕 according to equation (B15) and a 

volume dependent vector 𝑲𝒔𝒂𝒍𝒕(𝑽𝑩) according to equation (B16), which enable us to 

numerically find a solution for the logarithmic concentration vector 𝑪𝒔𝒂𝒍𝒕𝒍𝒏 (see, 

equation (B17)) according to equation (25). 
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Appendix C: Ion densities in the diffuse layer and bulk 

activities 

Even though they are dissociated from the surface groups, significant amounts of 

hydrated ions associate in a diffuse layer around the particle surface rather than 

separating from the particles altogether.12 This reduction in bulk cation activity has a 

measurable impact on the conductivity. Therefore, it is mandatory to take a closer look 

at the structure of the electrostatic double layer around the particles, which is shown 

schematically in Figure 6 and Figure 7.12 Given the impact on the conductance, Jellium 

models do not apply here.10, 13  

Instead, we need to consider a geometric framework around the particles to describe 

the extent of the diffuse layer. In this study, we interpret the boundary between Stern 

layer and Guoy-Chapman (diffuse) layer as the closest distance, up to which a hydrated 

ion can approach the surface of the particle. In keeping with the Debye-Hückel theory7, 

where ions are considered as voluminous spheres with point charges in their center, 

this means that the Guoy-Chapman layer begins at a distance  𝑟𝑃 + 𝑟𝑖𝑜𝑛 from the center 

of the cylindrical particles. This is in reasonable agreement with molecular dynamics 

simulations.14 

A boundary between diffuse layer and bulk phase is less easily defined. 

Phenomenologically, this boundary is identified as the slipping plane, located at the 

distance from the surface, at which the potential has decreased to the observed zeta 

potential of the particle.15 The zeta potential, in turn, is commonly quantified by the 

mobility of the particles in an external electrical field.15-17 However, apart from the 

surface potential and the countercharges, in the presence of an external electric field, 
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the zeta potential is influenced significantly by the dependance of the mobility on the 

polarization of the double layer in the electric field as well as the surrounding mobile 

counterions.16-18 The polarization gives rise to the relaxation effect, an effective 

decrease in the field strength experienced by the particle, which is represented in 

Figure C1, whereas the electrophoretic effect attributes a further reduction in mobility of 

the particles to the stream of mobile counterions and associated solvent molecules in 

the opposite direction.18  

 

Figure C1. Schematic representation of the relaxation effect. The polarization of the 

ionic atmosphere generates a response field in opposition to the external field, which in 

sum reduces the strength of the external field. 

As such, the zeta potential is a function of the surface charge, the attracted 

counterions in the diffuse layer, as well as the ionic strength of the medium and it is 

generally observed through measurements, rather than predicted. Such measurements 

are impractical for our purpose, as it would require constant monitoring of the zeta 

potential throughout the titration. Instead, we will assume that the boundary of the 
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diffuse layer is found at that distance from the particle center, where the surface 

potential has decreased to the level of the thermal potential (𝜓(𝑟𝐵) = −
𝑘𝑏𝑇

𝑞𝑒
). At room 

temperature, the thermal potential corresponds to roughly -26 mV, which is in the same 

range as the observed zeta potentials in the presence of background electrolyte.1 

Additionally, we find that recalculating with a boundary potential of −2
𝑘𝑏𝑇

𝑞𝑒
, representing 

the other end of the range of reported zeta potential values1, has a negligible impact on 

the calculated bulk ion concentrations. Works on charge normalization consider Wigner-

Seitz cells boundaries that follow from the particle density.9 This methodology is 

somewhat less helpful here, as we rely on a cutoff distance, at which we can consider 

the ionic conductivity as unimpeded. Compared to the cited works on charge 

renormalization, our approach echoes the consideration of smaller Wigner-Seitz cells 

ending at the boundary layer, which are in contact with a reservoir, that holds the bulk 

ions.19, 20 With these boundary conditions, we can apply the Poisson-Boltzmann 

equation as follows: 

According to Debye and Hückel, and based on the Boltzmann principle, for a solution 

with exclusively monovalent ions, the charge density close to the charged particle, can 

be described with equation (C1).7 

 

 

𝜚(𝑟) =∑𝜚𝑖(𝑟)

𝑖

 

=∑𝜚+,𝑚(𝑟)

𝑚

+∑𝜚−,𝑛(𝑟)

𝑛

 

=∑𝜚+,𝑚
𝑏𝑢𝑙𝑘

𝑚

𝑒
−
𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇 −∑𝜚−,𝑛

𝑏𝑢𝑙𝑘

𝑛

𝑒
𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇  

(C1) 
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= 𝐼𝑏𝑢𝑙𝑘 (𝑒
−
𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇 − 𝑒

𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇 ) 

Here, 𝜚(𝑟) is the charge density at a radial distance 𝑟 from the central axis of the 

cylindrical particle, 𝜚+,𝑚(𝑟) is the charge density caused by cation 𝑚, 𝜚−,𝑛(𝑟) is the 

(negative) charge density caused by anion 𝑛 and 𝐼𝑏𝑢𝑙𝑘 is the bulk ionic strength. 

Our system contains divalent carbonate ions at elevated pH, which are not accurately 

reflected in equation (C1). Instead, the correct term to calculate the ion density of 

carbonate ions is presented in equation (C2).7 

 𝜚𝐶𝑂32−(𝑟) = 𝑧
2𝜚𝐶𝑂32−
𝑏𝑢𝑙𝑘 𝑒

𝑧𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇 = 4𝜚𝐶𝑂32−

𝑏𝑢𝑙𝑘 𝑒
2𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇 = 4 ∙ 𝜚𝐶𝑂32−

𝑏𝑢𝑙𝑘 (𝑒
𝑞𝑒Ψ(𝑟)
𝑘𝐵𝑇 )

2

 (C2) 

Given the low concentration of carbonate ions in the solution and the fact that the ions 

are repelled from the surface, the error in treating carbonate ions as four separate, 

singly charged moieties described by equation (C1) is negligible, but significantly 

simplifies solving this new system of equations. 

The charge density in the Guoy-Chapman layer is given by the Poisson-Boltzmann 

equation, expressed in equation (C3) in cylindrical coordinates21: 

 
𝑑2Ψ

𝑑𝑟2
+
1

𝑟

𝑑Ψ

𝑑𝑟
= −

𝜚(𝑟)

𝜀0𝜀𝑟
 (C3) 

Here, Ψ is the surface potential. 

The is a significant distinction between these two equations is that the ion density in 

equation (C1) is based on the ionic strength. Therefore, it differs from the charge 

density in equation (C3) if multivalent ions are present. The charge density is the 

difference between anion and cation density. This separation of charges is evidence of 
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an electric field and is therefore considered in the potential decrease described by 

equation (C3). 

The first-order term in equation (C3) relates to the curvature of the particle surface. 

Given the curvature, comparatively simple, linear solutions for the potential based on 

exponential functions do not apply here. Instead, the system can be described using 

Bessel functions. 

Oshima, Healy and White16 integrated equation (C3) after normalizing the potential 

and the particle radius by thermal units and the Debye length, respectively. Their 

expression for the potential as a function of radial distance from the particle axis is given 

in equation (C4). 

 𝑦(𝑟) = 2 ln

(

 
 
(1 + 𝐷𝑐(𝑟))(1 + (

1 − 𝛽
1 + 𝛽

)𝐷𝑐(𝑟))

(1 − 𝐷𝑐(𝑟))(1 − (
1 − 𝛽
1 + 𝛽)𝐷𝑐

(𝑟))
)

 
 

 (C4) 

with 

 
𝛽 =

𝐾0(𝜅𝑟𝑝)

𝐾1(𝜅𝑟𝑝)
 (C4)-a 

 𝑐(𝑟) =
𝐾0(𝜅𝑟)

𝐾0(𝜅𝑟𝑝)
 (C4)-b 

 𝐷 =
(1 + 𝛽) tanh (

𝑦0
4 )

1 + √1 − (1 − 𝛽2) (tanh (
𝑦0
4 ))

2
 (C4)-c 

 𝑦0 =
𝑞𝑒Ψ0
𝑘𝐵𝑇

= ±2 cosh−1 (−
1

𝜅𝑟𝑝
+ √(

1

𝜅𝑟𝑝
)

2

+ (
𝜎

√8𝐼𝑏𝑢𝑙𝑘𝜀0𝜀𝑟𝑘𝐵𝑇
)

2

+
1

2
) (C4)-d 

In these equations, 𝑦(𝑟) is the normalized surface potential, obtained from the real 

surface potential by comparison with the thermal potential, 𝑦0 is the normalized surface 
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potential, which, in our case has a negative sign, and 𝐾0(𝑥) and 𝐾1(𝑥) refer to the 

modified Bessel functions of the second kind of order 0 and 1. 

This potential expression gives access to the ion densities in the immediate vicinity of 

the particle, which in turn enables balancing the distribution of dissociated ions in the 

system by distinguishing quantitatively between bulk ions and those kinetically tied to 

the particle.22 

With the knowledge of the exact surface charge at any given point on the titration 

curve according to equation (14), the potential around the particles can be calculated 

with equation (C4).  

 

𝑛𝑖
𝑒𝑑𝑙 = ∫ (𝜚𝑖

𝑏𝑢𝑙𝑘𝑒−𝑧𝑖𝑦(𝑟))𝑑𝑉
𝑟𝐵

𝑟𝑝+𝑟𝑖𝑜𝑛,𝑖

= ∫ (𝜚𝑖
𝑏𝑢𝑙𝑘𝑒−𝑧𝑖𝑦(𝑟))

𝑟𝐵

𝑟𝑝+𝑟𝑖𝑜𝑛,𝑖

2𝜋𝑙𝑡𝑜𝑡𝑎𝑙𝑟𝑑𝑟

= 2𝜋𝑙𝑡𝑜𝑡𝑎𝑙𝜚𝑖
𝑏𝑢𝑙𝑘 ∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟

𝑟𝐵

𝑟𝑝+𝑟𝑖𝑜𝑛,𝑖

 

(C5) 

Here, 𝑛𝑖
𝑒𝑑𝑙 is the amount of ion 𝑖 in the diffuse layer, 𝜚𝑖

𝑏𝑢𝑙𝑘 and 𝑧𝑖 are the bulk ion 

densities and charge valencies of ion 𝑖, which in this study, specifically, are +1 for 

cations and -1 for anions and 𝑙𝑡𝑜𝑡𝑎𝑙  is the combined length of all CNC in the system 

placed end-to-end. 

Equation (C5) yields total numbers of ions that are found in the volume around the 

nanocellulose particles at distances 𝑟𝑖𝑜𝑛 < 𝑟 < 𝑟𝐵 from the particle surface at 𝑟𝑝 from the 

particle axis. By balancing with the total number of dissociated ions in the system, 𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 , 

it becomes possible to determine the ionic strength, as well as the amounts of the 

separate ionic species in the bulk phase ,  𝑛𝑖
𝑏𝑢𝑙𝑘, with the bulk phase being located at 

distances 𝑟 > 𝑟𝐵from any particle surface. This is described by equation (C6). 
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𝑛𝑖
𝑏𝑢𝑙𝑘 = 𝑛𝑖

𝑡𝑜𝑡𝑎𝑙 − 𝑛𝑖
𝑒𝑑𝑙 

= (𝑉0 + 𝑉𝐵)𝜚𝑖
𝑡𝑜𝑡𝑎𝑙 − 𝑛𝑖

𝑒𝑑𝑙 

(C6) 

Equations (C5) to (C6) refer to every individual ionic species in the solution, given 

that the lower integration limit contains the individual ion radii 𝑟𝑖𝑜𝑛,𝑖. Given this challenge, 

and accepting that it may misrepresent the system slightly, we will assume that the 

closest distance, to which any ion can approach the particle surface, is the radius of a 

hydrated sodium ion, 𝑟𝑁𝑎+, which has been determined as 250 pm. Chloride, hydroxide 

and carbonate ions are repelled from the surface, so either ions concentrations will be 

negligible at the boundary between the Stern and Gouy-Chapman layers, rendering this 

approximation viable, and given the diffusion by proton hopping, defining a set radius for 

protons is difficult. Therefore, the simplest solution is to assume a similar radius to that 

of sodium ions, which is similar to that of an expected oxonium ion. 

With these assumptions and with the knowledge of the total amount of ions in double 

layer and bulk phase of the analyte based on the solution to equation (25), it becomes 

possible to calculate the number of cations and anions in the double layer by solving 

equation (C7) for the individual cationic and anionic species. These numbers of ions 

can then be converted into activity coefficients and concentrations according to 

equation (C8). 

𝑛𝑖
𝑒𝑑𝑙 = 2𝜋𝑙𝑡𝑜𝑡𝑎𝑙𝜚𝑖

𝑏𝑢𝑙𝑘 ∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟
𝑟𝐵

𝑟𝑝+𝑟𝑁𝑎+

 (C7) 

𝛾𝑖 =
𝑛𝑖
𝑏𝑢𝑙𝑘

𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 =

𝜚𝑖
𝑏𝑢𝑙𝑘

𝜚𝑖
𝑡𝑜𝑡𝑎𝑙 =

𝑐𝑖
𝑏𝑢𝑙𝑘

𝑐𝑖
𝑡𝑜𝑡𝑎𝑙  (C8) 

It is worth noting that in equation (C8), the (relative) bulk activities for ions with equal 

charge should be identical, as the attraction of ions into the double layer depends solely 
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on charge. This is evident when equations (C8) and (C7) are combined to yield the 

number balances of cations and anions (equation (C9)) and a direct expression for the 

bulk activity of cations and anions (equation (C10)). 

𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑖

𝑏𝑢𝑙𝑘 + 𝑛𝑖
𝑒𝑑𝑙 = 𝑛𝑖

𝑏𝑢𝑙𝑘 +
𝑛𝑖
𝑏𝑢𝑙𝑘

(𝑉𝑥 + 𝑉𝑏)
2𝜋𝑙𝑡𝑜𝑡𝑎𝑙 ∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟

𝑟𝐵

𝑟𝑝+𝑟𝑁𝑎+

 (C9) 

𝛾𝑖 =
𝑛𝑖
𝑏𝑢𝑙𝑘

𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 =

1

1 +
2𝜋𝑙

(𝑉𝑥 + 𝑉𝑏)
∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟
𝑟𝐵
𝑟𝑝+𝑟𝑁𝑎+

=
(𝑉𝑥 + 𝑉𝑏)

(𝑉𝑥 + 𝑉𝑏) + 2𝜋𝑙𝑡𝑜𝑡𝑎𝑙 ∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟
𝑟𝐵
𝑟𝑝+𝑟𝑁𝑎+

 

(C10) 

 

The only dependence of the bulk activities for cations and anions, according to 

equation (C10), is on the decreasing surface potential throughout the diffuse layer, 

which in turn is a function of the surface charge and the bulk ionic strength (see, 

equation (C4)). Given this dependance of the individual ionic activities on the sum of all 

bulk ion concentrations, again, the equations cannot be solved individually or 

analytically. Instead, we consider the following system of equations derived from (A3), 

(C4) and (C9), which can be solved numerically. 

𝜅 = √
2𝑞𝑒2𝑁𝐴𝐼

𝜀0𝜀𝑟𝑘𝐵𝑇
= √

2𝑞𝑒2𝑁𝐴
𝜀0𝜀𝑟𝑘𝐵𝑇

∑
𝑧𝑖
2𝑛𝑖
𝑏𝑢𝑙𝑘

(𝑉0 + 𝑉𝐵)
𝑖

 (C11)-1 

𝑛𝑖
𝑏𝑢𝑙𝑘 = 𝑛𝑖

𝑡𝑜𝑡𝑎𝑙 −
𝑛𝑖
𝑏𝑢𝑙𝑘

(𝑉0 + 𝑉𝐵)
2𝜋𝑙𝑡𝑜𝑡𝑎𝑙 ∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟

𝑟𝐵

𝑟𝑝+𝑟𝑁𝑎+

 (C11)-12 

𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 = (𝑉0 + 𝑉𝐵)𝜚𝑖

𝑡𝑜𝑡𝑎𝑙 (C11)-13 

𝜚𝑖
𝑏𝑢𝑙𝑘 =

𝑛𝑖
𝑏𝑢𝑙𝑘

(𝑉0 + 𝑉𝐵)
 (C11)-14 
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Here, equation (C11)-1 describes the Debye length as a function of the bulk ionic 

strength, which is applied in the calculation of the surface potential according to 

equation (C4). Integrating equation (C4) in the range of the diffuse layer then allows 

for the determination of the number density of ions in the bulk phase, which can be 

converted to bulk ion densities using the overall volume of the bulk solution 

(equation(C11)-14). The input required to solve this equation is the total number of ions 

distributed between bulk phase and diffuse layer, which is obtained in equation (C11)-

1-3 using the ion total densities calculated in equation (25). The unit of the ion densities 

is mol/m3, which is equivalent to mmol/L. 

 

Appendix D: Conductivity of the colloidal particles 

The conductivity of dissolved polyelectrolytes has previously been calculated for 

polymer chains.23 This model is derived from an idealized view of the polymers as 

infinitely long cylinders with a homogenous line charge. Previously published by 

Manning24, van Leeuwen et al.23 adapted the same deliberations in SI-units rather than 

the cgs system and applied Manning’s theorem to experimental values. The starting 

point for calculating the polyelectrolyte mobility is the Henry equation for the mobility of 

randomly oriented, infinitely long cylinders (equation (D1)). 

 𝑢′𝑝 ≈ 𝑢𝑝,𝑒𝑓𝑓 =
2

3

𝜀0𝜀𝑟
𝜂
𝜁 (D1) 

Here, 𝑢′𝑝 is the idealized particle mobility observed if no polarization would occur, 

𝑢𝑝,𝑒𝑓𝑓 is the effective particle mobility, 𝜂 is the viscosity of water at room temperature 

and 𝜁 is the observed zeta potential. 
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Henry’s equation relates the zeta potential to the electrophoretic particle mobility.23-25 

Inconveniently, the zeta potential is not equal to the surface potential of the considered 

particles and as mentioned above, there is no direct theoretical access to Zeta potential 

values.23 Henry’s equation considers the friction between particle and solvent, but 

neglects relaxation effects caused by the external electric field. The external field 

causes a polarization in the counterion distribution around the particles which generates 

an opposing electrical field as shown in Figure C1. As a result, the particle is partially 

shielded from the external potential.25 

Therefore, as a correction to Henry’s equation, Manning considers the diminished, 

effective potential based on the flux of the free counterions compared to that of the 

counterions in the double layer, which are diffusing with the particle. According to van 

Leeuwen et al., these considerations can be expressed as equations (D2) and (D3). 

 
𝐸𝑒𝑓𝑓
𝐸

= 𝛾𝑝 − (1 − 𝛾𝑝)
𝑢𝑝,𝑒𝑓𝑓
𝜇+

 (D2) 

 
𝑢′𝑝
𝐸
=
𝑢𝑝,𝑒𝑓𝑓
𝐸𝑒𝑓𝑓

 (D3) 

Here, 𝐸 is the strenght of the external field, 𝐸𝑒𝑓𝑓 is the effective external electrical field 

taking into account the polarization of the diffuse layer, 𝛾𝑝 is the degree of dissociation 

of the surface groups of the particles and 𝜇+ is the average mobility of the counterions. 

In these considerations, 𝛾 is an activity coefficient that describes the fraction of freely 

dissociated ions as opposed to (1 − 𝑦), which describes the fraction of counterions 

trapped in the double layer around the particle. Citing the result of a series development 

of an expression describing the field around a real polyion and experiments that 

confirmed the value, Manning and van Leeuwen et al. assume a value of 𝛾 = 0.866.23, 24 
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Combining equations (D1)-(D3) yields equation (D4). 

 𝑢𝑝,𝑒𝑓𝑓 =
𝛾𝑝
2
3
𝜀0𝜀𝑟
𝜂
|𝜁|

1 +
(1 − 𝛾𝑝)
𝜇+

2
3
𝜀0𝜀𝑟
𝜂
|𝜁|

 (D4) 

This expression still depends on the zeta potential 𝜁, which Manning, considering 

polyelectrolytes in otherwise ion-free environment, estimates as the limiting potential 

according to the Debye-Hückel theory. For monovalent counterions, this estimation can 

be expressed in the form of equation (D5).24 

 𝜁 = 2
𝑘𝐵𝑇

𝜖
ln(𝑘′𝐷𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) (D5) 

with 𝑘′𝐷 = √
𝑞𝑒2𝑐𝑝
𝜀0𝜀𝑟𝑘𝐵𝑇

 (D5)a 

The inverse Debye length 𝑘′𝐷 in this case only depends on the concentration of 

charged groups on the particle 𝑐𝑝, because it is assumed that apart from the dissociated 

polyelectrolyte, the solution is otherwise ion-free. 

Combining equations (D4) and (D5) and multiplying with the Faraday constant, an 

expression can be derived for the molar electrolytic conductivity of the particle’s surface 

groups (equation (D6)): 

 
Λ𝑃 =

𝛾𝑝Λ+𝐻 ln(𝑘
′
𝐷𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒)

Λ+ + (1 − 𝛾𝑝)𝐻 ln(𝑘′𝐷𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒)
 

(D6) 

with 
𝐻 =

4

3

𝜀0𝜀𝑟
𝜂
𝑅𝑇 (D6)a 

 

These equations are not directly applicable to our model given that, as mentioned in 

Appendix C, it is impractical to determine zeta potentials along the titration process and 
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we therefore considered a boundary potential of -26 mV instead. Additionally, the 

estimate for the zeta potential does not apply to our particles, as the Debye length in our 

system is neither significantly bigger nor smaller than the particle radius. Instead, both 

values are very similar throughout the titration, and the fact that the Debye length 

decreases to the exact value of the particle radius and below during the addition of 

excess sodium hydroxide in the end of the titration makes the estimate mathematically 

impractical. When Debye length and particle radius coincide, the logarithmic term takes 

the value 0, rendering the estimated particle mobility value 0 as well. 

Therefore, we choose to adapt equation (D4) by replacing the zeta potential with our 

boundary potential (see, Appendix C) and by applying the activity values that follow 

from the bulk concentrations calculated in Appendix C. In so doing, we obtain 

equations (D7) and (D8). 

 𝑢𝑝,𝑒𝑓𝑓 =
𝛾𝑝
2
3
𝜀0𝜀𝑟
𝜂
|−
𝑘𝐵𝑇
𝑞𝑒
|

1 +
(1 − 𝛾𝑝)
𝜇+

2
3
𝜀0𝜀𝑟
𝜂
|−
𝑘𝐵𝑇
𝑞𝑒
|

 (D7) 

 
Λ𝑝,𝑒𝑓𝑓 = 𝐹𝑢𝑝,𝑒𝑓𝑓 =

𝛾𝑝𝜆+𝐻

𝜆+ + (1 − 𝛾𝑝)𝐻
 

(D8) 

with 
𝐻 =

4

3

𝜀0𝜀𝑟𝑅𝑇

𝜂
 (D8)a 

and Λ+ =
𝑐𝐻+Λ𝐻+

0 + 𝑐𝑁𝑎+Λ𝑁𝑎+
0

𝑐𝐻+ + 𝑐𝑁𝑎+
 (D8)b 

The molar equivalent conductivities Λ𝑝,𝑒𝑓𝑓 of the particles is obtained by multiplying 

the particle mobility 𝑢𝑝,𝑒𝑓𝑓 with the Faraday constant F. 
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Finally, in addition to the particles moving through the solution and adding to its 

conductivity, the ions in the double layer are not stagnant.26 Instead, there is a fluid 

exchange between ions in the diffuse layer and those in bulk that amounts to a net zero 

change in ionic distribution, but as ions enter and leave the diffuse layer, a net charge 

transport is possible. In literature, theses phenomena have been summarized as 

surface conductivity.27 Given the dominant influence of the charged particle surface, 

however, this charge transport due to the diffuse layer is lower than that through the 

bulk phase. Rather than following the direction of the external field applied to measure 

conductivity, the primary movement of the ions in the diffuse layer is radial with regard 

to the cylindrical charged particle. Following the deliberations outlined by Dhukin, 

Zimmermann and Werner27, the surface conductivity of the ions can be scaled by 

comparing the electrostatic energy in bulk and that in the double layer according to 

equation (D9). 

 

Λ+,𝑠 = Λ+

2𝜋𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝜚𝑖
𝑏𝑢𝑙𝑘 ∙ ∫ 𝑟𝑒0𝑑𝑟

𝑟𝐵

𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒+𝑟𝑁𝑎+

2𝜋𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝜚𝑖
𝑏𝑢𝑙𝑘 ∙ ∫ 𝑟𝑒−𝑧𝑖𝑦(𝑟)𝑑𝑟

𝑟𝐵
𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒+𝑟𝑁𝑎+

= 𝜆+
𝜋𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑟𝐵

2 − 𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
2)

2𝜋𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∫ 𝑟𝑒−𝑦(𝑟)𝑑𝑟
𝑟𝐵
𝑟𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒+𝑟𝑁𝑎+

 

(D9) 

Alphabetical list of symbols 

Constants 

𝐹 Faraday constant 𝐹 = 𝑞𝑒𝑁𝐴 = 96485 
𝐶

𝑚𝑜𝑙
 

𝑘𝐵 Boltzmann constant 1.38 ∙ 10−23  
𝐽

𝐾
 

𝑁𝐴 Avogardro’s number: 6.023 ∙ 1023  
1

𝑚𝑜𝑙
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𝑞𝑒 Elementary charge −1.602 ∙ 10−19 𝐶 

𝜀0 Vacuum permittivity 8.85 ∙ 10−12  
𝐶2

𝐽𝑚
 

𝜀𝑟 Relative permittivity; water at room temperature: 78 

𝜆𝐵 Bjerrum length; in water at room temperature: 7.15 ∙ 10−10 𝑚 

𝜂 Viscosity of water, at 20°C: 1.002 mPas 

 

Latin alphabet symbols 

A1 Acid dissociation reaction of orthophosphoric acid 

A2 Acid dissociation reaction of dihydrogen phosphate 

A3 Acid dissociation reaction of hydrogen phopshate 

A4 Acid dissociation reaction of Carbonic acid 

A5 Acid dissociation reaction of bicarbonate 

A6 Acid dissociation reaction of sodium dihydrogen phosphate 

𝐴𝑃 Total surface area 

𝐴𝑐ℎ Area of a single charge on the surface 

𝐴𝑒𝑙 Electrode area 

𝑐𝐵 Concentration of the titrant (NaOH, 0.1 mM) 

𝒄(𝑽𝑩) Vector containing the real overall concentrations of dissociated 

ions at titrant volume 𝑽𝑩 

𝒄𝒃𝒖𝒍𝒌(𝑽𝑩) Vector containing the real bulk concentrations of dissociated 

ions at titrant volume 𝑽𝑩 

𝑪𝒍𝒏
𝒃𝒖𝒍𝒌(𝑽𝑩) Vector of logarithmic bulk concentrations at titrant volume 𝑽𝑩 

(see, equations (B13) and (B17)) 

𝑪𝒍𝒏(𝑽𝑩) Vector of logarithmic overall concentrations at titrant volume 𝑽𝑩 
(see, equations (B13) and (B17)) 

∆𝑐𝐵 Titrant concentration change in the analyte 

𝑐𝐶𝑂3
𝑁𝑎𝑂𝐻 Concentration of carbonate in the titrant 

𝑐𝐶𝑂3
𝑎𝑖𝑟  Virtual concentration of carbonate entering the analyte from the 
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air 

𝑐𝐻𝐶𝑙  Concentration of HCl solution (0.1 mM) 

𝑐𝑁𝑎𝐻2𝑃𝑂4  
Concentration of sodium dihydrogen phosphate in the standard 

solution 

𝑐𝑃,𝑎𝑛𝑎𝑙𝑦𝑡𝑒 Mass concentration of phosphate in the substituted cellulose 

[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑁𝑎𝑂𝐻 Concentration of carbonate in the titrant 

[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒]𝑎𝑖𝑟 Perceived concentration of carbonate in the titrant, i.e. amount 
of carbonate entering the analyte per titrant Volume increment 

D1 Sodium dissociation reaction of sodium dihydrogen phosphate 

D2 Sodium dissociation reaction of sodium hydrogen phosphate 

D3 Sodium dissociation reaction of disodium hydrogen phosphate 

D4 Sodium dissociation reaction of sodium bicarbonate 

D5 Sodium dissociation reaction of sodium carbonate 

𝑑𝑎𝑟𝑐⊥ 
Rectangular component of an arc length spanning an area 

increment  

𝑑3𝐷 
3-dimensional Euclidian distance of any surface point from the 

origin 

𝑑𝐴𝑖 Area increment 𝑖 

𝑑𝑎𝑟𝑐 Arc length increment 

𝑑𝑐ℎ𝑎𝑟𝑔𝑒 Radius of the considered charged moiety 

𝑑𝑒𝑙 Electrode distance 

𝑑𝑥𝑦 
Two-dimensional Euclidian distance of any surface point from 

the z-axis 

𝐸 Externally applied electrostatic potential for mobility 
measurements 

𝐸𝑒𝑓𝑓 Effective external potential at the particle boundary plane 

𝑒𝑞 Equivalents of base added to the analyte (NaOH) 

𝐺 Conductance [𝑆] 
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𝐺𝑛𝑜𝑟𝑚 Normalized conductance [𝑆𝑚2] 

Δ𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
0  Ion pair dissociation reaction free energy 

Δ𝐺𝑡𝑜𝑡𝑎𝑙
0  Total Gibbs free energy 

𝐼 Bulk ion density [
1

𝑚3
] 

𝐼𝑏𝑢𝑙𝑘 Bulk ionic strenght 

𝐾0(𝑥), 𝐾1(𝑥) Modified Bessel functions of the second kind of order 0 and 1 

𝐾𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 Counterion condensation contribution to dissociation 
equilibrium 

𝐾𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 Constant expressing the influence of counterion condensation 

𝐾𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛  Ion pair dissociation equilibrium constant 

𝐾𝑗 Equilibrium constant of reaction j (see, Table 1) 

𝐾𝑛𝑒𝑤 Corrected overall equilibrium constant 

𝑲(𝑽𝑩) Vector containing the system information at titrant volume 𝑽𝑩 
as defined in equations (B12) and (B16) 

𝑙 Particle length 

𝑴 Matrix 𝑴 as defined in equations (B11) and (B15) 

𝑴−𝟏 inverse of the Matrix 𝑴 

𝑚𝑎𝑛𝑎𝑙𝑦𝑡𝑒  Mass of cellulose in the analyte 

𝑚𝑝 Total mass of cellulose in the analyte 

𝑁𝑞,𝑖 Number of elementary charges in area increment i 

𝑁𝑞 Number of elemental charges generating the electrostatic 
potential 

𝑁𝑞 Total number of charge equivalents 

𝑛𝐻𝐶𝑙  Amount of HCl used to acidify the analyte 

𝑛𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 Amount of phosphate in the analyte 

𝑛𝑏𝑎𝑠𝑒 Amount of added base (NaOH) 
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∆𝑛𝐵 Change in titrant amountin the analyte 

𝑛𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒  Amount of carbonate in the analyte 

𝑛𝑖
𝑏𝑢𝑙𝑘 Amount of ion 𝑖 in the bulk phase 

𝑛𝑖
𝑒𝑑𝑙 Amount of ion 𝑖 in the diffuse layer 

𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 Total amount of ion 𝑖 in the analyte 

𝑞𝑖 Charge i [𝐶] 

𝑞𝑝𝑟𝑜𝑏𝑒 Probing charge experiencing  

𝑟𝑖
→ Location vector of a specific charge i 

𝑟𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 Reaction rate of the carbonation reaction 

𝑟𝑖𝑜𝑛 Ion radius 

𝑟𝑝 Particle radius 

T Temperature [𝐾] 

𝑈 Electrostatic potential energy [𝐽] 

𝑈𝑠𝑖𝑡𝑒 Electrostatic potential energy of the environment at the 
considered site 

𝑢′𝑝 
Average mobility of the cellulose particles in standard 

conditions 

𝑢𝑝,𝑒𝑓𝑓 
Observed mobility of the cellulose particles affected by 

relaxation 

𝑉𝐵  Volume of added titrant (NaOH) 

𝑉𝑁𝑎𝐻2𝑃𝑂4  Volume of sodium dihydrogen phosphate added to the analyte 

𝑉𝑒𝑙  Electrode measuring geometry volume 

𝑉𝑜 Initial volume of the analyte 

𝑉𝑝 Particle volume 

X,y,z Cartesian coordinates to describe the extent of the particles 
(see, A1) 

𝑥𝑐ℎ , 𝑦𝑐ℎ , 𝑧𝑐ℎ Extent of the probing charge in the origin of the coordinate 
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system in x-, y- and z-direction 

𝑦0 Normalized surface potential 

𝑦(𝑟) Normalized potential as a function of radial distance from the 
particle axis 

𝑧𝑖 Charge valencies of ion 𝑖 

𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥,1, 

𝑧𝑚𝑎𝑥,2 
Extent of the particle along the z-axis 

 

Greek alphabet symbols 

𝛼 Titer of carbonate in the titrant 

𝛾𝑖 Bulk activity of ion 𝑖 

𝛾𝑝 Degree of dissociation of the particle surface groups (mol 
dissociated per mol surface groups) 

𝜸(𝑽𝑩) Bulk activity vector at titrant volume 𝑽𝑩 

𝜸𝒍𝒏(𝑽𝑩) Logarithmic bulk activity vector at titrant volume 𝑽𝑩 

𝜆𝐷 Debye lenght 

𝜁 Zeta potential 

𝜅 Debye parameter 

Λ+,𝑠 Estimated average molar electrolytic equivalent conductivity of 
cations in the diffuse layer 

Λ+ Average molar electrolytic equivalent conductivity of the counterions 
of the particles (here: sodium and protons) 

Λ𝑃  Estimated average molar electrolytic equivalent conductivity of the 
particles 

𝜇+ Average mobility of the dissociated counterions 

𝜌 Density of cellulose 

𝜚(𝑟) Overall charge density as a function of radial distance from the 
particle axis 

𝜚𝐶𝑂32−(𝑟) Charge density due to carbonate ions 
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𝜚𝐶𝑂32−
𝑏𝑢𝑙𝑘  Bulk charge density due to carbonate 

𝜚−,𝑛(𝑟) Charge density due to anion species n 

𝜚+,𝑚(𝑟) Charge density due to cation species m 

𝜚𝑖(𝑟) Charge density due to ionic species i as a function of radial distance 
from the particle axis 

𝜚𝑖
𝑏𝑢𝑙𝑘  Bulk ion densities of ion 𝑖 [

𝑚𝑜𝑙

𝑚3
] 

𝜚𝑖
𝑡𝑜𝑡𝑎𝑙 Total ion density of ion 𝑖 in the system [

𝑚𝑜𝑙

𝑚3
] 

𝜎 Conductivity [
𝑚𝑆

𝑐𝑚
] 

𝜎𝑆 Surface charge expressed as number of unit charges per surface 
area 

𝜎𝑚 Specific charge density in mol/kg[
𝑚𝑜𝑙

𝑘𝑔
] 

∆𝜎𝑛𝑜𝑟𝑚 Conductance change 

∆𝜎 Conductivity change 

𝜑 Electrostatic potential of a point charge 

Ψ0 Electrostatic surface potential  

Ψ(𝑧′) Integral term describing the normalization of the surface charge 
interactions 
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