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1 Supplementary material for experimental studies from literature 
 
Table S1. Overview of experiments from literature. 
 

Reference Material Measurement Wavelength 
range / eV Absorption Bands/ eV Assignment Absorption Bands Band Gaps / eV Assignment Band Gaps Method 

Cherkashin, 19691 Ceramic UV/Vis Spectrometer - 0.81 
1.50 - - - - 

Tanaka, 19792 Polycrystalline sample, 
Ceramic 

UV/Vis Spectrometer (self-
build in lab) 1.0-3.5 1.7 

3.1 - - - - 

Belova, 19833 0.1-0.5 µm Thin Film 
Opt. Transmission Spectra 

(UV/Vis/NIR), Perkin-Elmer-
spectrometer 450 

0.5-6.1 

0.87  
1.70 
2.85 
5.39 

e(Co(II)) -> t2(Co(II)) 
e(Co(II) -> 4s(Co(II)) 

t2g(Co(III)) -> eg(Co(III)) 
2p(O) -> 4s(Co(III)) 

*Characterization based on SCF 
XaSW, Tanabe-Sugano 

- - - 

Martens, 19854 Ceramic: Pellets from 
powder (hot pressed) Ellipsometer 0.7-5.5 

0.80 
1.60 
2.65 
4.40 

Origin uncertain 
Transitions related to Co(III) 

*assigned due to substitution with 
Co in CoFe2O4 

- - - 

Cook, 19865 Thin Film 
(polycrystalline) 

opt. Transmission (T) Cary-
17, Ellipsometer (E) (300-

1000n) 
0.5-4.1 

0.82 (T) 
0.93 (T) 

1.7 (T)/1.6 (E) 
2.8 (T)/2.7 E) 

e(Co(II)) -> t2(Co(II)) 
e(Co(II)) -> eg(Co(III)) 

t2g(Co(III)) -> t2(Co(II)) 
2p(O) -> t2(Co(II)) 

*assigned based on Miedzinska 

- - - 

Murad, 19886 0.1-0.2 µm Thin Film 
(spray pyrolysis) 

Pye-Unciam SP8-100 
spectrophotomer 1.4-4.1 - - 

1.45 
2.00 
3.20 

3x direct allowed BGs Tauc relation 

Schumacher, 19907 0.1 µm Thin Film 
(sputtering) Photorepsonse 1.5-4.1 - - 1.5 Indirect BG (1A1->1T1 Oh Co3+) 

*based on Martens 

Tauc relation 
from quantum 
efficiency data 

Varkey, 19938 0.02-0.1 µm Thin Film Philips PU 3700 
spectrophotometer 1.4-4.1 - - 1.65 Optical BG Extrapolated 

linear portion 

Lenglet, 19949 

Thin Film 
(decomposition (D) of 

cobaltous nitrate vs. sol 
gel method (S)) 

Optical Spectra 0.5> 

0.85 (D)/0.84 (S) 
0.95/0.93 
1.85/1.85 
3.45/3.35 
4.80/4.70 

- - - - 

Nkeng, 199510 
0.01-2 µm Thin Film 
(sputtering (SU) vs. 

spray pyrolysis (SY)) 

UV/Vis/NIR reflectance 
spectroscopy (Lambda 9 

Perkin-Elmer spectrometer) 
0.5-6.2 

0.82(SU)/0.84(SY) 
0.93/0.95 
1.70/1.95 
2.80/3.55 

- - - - 
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Patil, 199611 1.9 µm Thin Film (spray 
pyrolysis) 

Hitachi 330 
spectrophotometer 1.5-3.5 

0.48 
1.02 
1.08 
1.12 
1.26 
1.38 

- 

0.75 
1.10 
1.26 
1.38 
1.44 
2.06 

Indirect forbidden opt. BG 
Indirect allow. opt. BG 

Direct forbidden opt BG 
Direct forbidden opt BG 

Direct allow. opt BG 
Direct allow. opt BG 

Tauc relation 

Ruzakowski Athey, 
199612 

0.015-0.022 µm Thin 
Film 

(Spray Pyrolysis) 

Transmittance/ Ellipsometry 
J.A. Woollam Co., Inc. 

Rotating analyzer VASE 
0.7-3.5 

0.83 
0.94 
1.70 
2.90 

e(Co(II)) -> t2(Co(II)) 
e(Co(II)) -> eg(Co(III)) 

t2g(Co(III)) -> t2(Co(II)) 
2p(O) -> t2(Co(II)) 

* assigned based on Miedzinska 

- - - 

Cheng, 199813 0.65 µm polycrystalline 
thin Film (CVD) 

Shimazu spectrophotometer 
UV-140, Transmission 1.3-2.2 1.6-1.7 

2.8-2.9 
- 

LMCT 
1.50-1.52 
1.88-1.95 

2x direct allow. opt. BGs 
Co(III)-Co(II) 

O-Co(II) 
 

Tauc relation 

Barreca, 200114 0.204-1.276 µm Thin 
Film (CVD) 

Opt Abs UV-VIS-NIR dual 
beam spectrophotometer: 

Carry 5E (Varian) 
0.6-4.1 

0.82 
0.98 
1.70 
2.48 

e(Co(II)) -> t2(Co(II)) 
e(Co(II)) -> eg(Co(III)) 

2p(O) -> eg(Co(III)) 
2p(O) -> t2(Co(II)) 

*assigned based on Nkeng, 
Belova, Cook 

 
1.5 
2.0 

Subband inside ‘true’ opt. BG, O 2p-
>Co(III) 3d 

‘true’ opt. BG, interband transitions 
(O 2p->Co(II) 3d) 

Tauc relation 

Kadam, 200115 0.9(A)-1.7(B) µm Thin 
Film (PSPT) 

Hitachi model-330 
spectrophotometer 1.5-3.5 1.04 (A)/0.88 (B) 

1.16 (A)/1.08 (B) - 

1.10(A)/0.98(B) 
 

1.46(A)/1.42(B) 
2.10(A)/2.02(B) 

Indirect allow. opt. BG 
2x direct allow. opt. BGs Tauc relation 

Pejova, 200116 0.6 µm Thin Film 
(polycrystalline)  

Hewlett Packard  8452A  
spectropho-tometer (UV-vis 

spectral region) 
1.5-4.0 - - 2.2 Direct allow. opt. BG Tauc relation 

Kim, 200317 1.0 µm Thin Film (sol-
gel method) 

Elipsometry (rottating 
analyzer) 1.5-4.0 

1.65 
2.40 
2.80 

t2g(Co(III)) -> t2(Co(II)) 
2p(O) -> eg(Co(II)) 
2p(O) -> t2(Co(III)) 

* assigned based on Miedzinska 

- - - 

Mane, 200318 Thin Film (MOCVD) 

UV/Vis Spectrophotometry 
(Hitachi UV-visible 

Spectrophotometer model U-
300) 

1.4-3.1 - - 1.45 
2.05 2x direct allow. opt. BG Tauc relation 

Gulino, 200319 Thin Film (MOCVD) UV/Vis Spectrometer 
(Beckman DU650) 1.2-3.5 - - 1.48 

2.19 2x direct allow. opt. BG Tauc relation 

Yamamoto, 200320 0.0068/0.0136 µm Thin 
Film (sol-gel method) 

opt spectrum analyzer Hitachi 
Ltd., U-3500, IR optical 
spectrum analyzer (Ando 

Electric Co. Ltd., AQ 6315A) 
with white light (Ando 

Electric Co. Ltd., AQ 4303B) 

0.5-3.5 

0.75 
0.90 
1.70 
3.00 

- 

0.80 (0.7 & 1.0) 
1.30 
2.10 

 
 
 
 

e(Co(II)) -> t2(Co(II)) 
t2g(Co(III)) -> t2(Co(II)) 

2p(O) -> t2(Co(II)) 
*assigned based on Miedzinska 

all three: direct allowed opt. BGs 

Tauc relation 

Bahlawane, 200421 0.03-0.04 µm Thin Film 
(CVD) 

UV–Vis spectrometer, 
UVIKON 860, KONTRON 

Instruments 
1.5-4.1 1.69 

3.02 - 

1.43 
2.15 

t2g(Co(III)) -> t2(Co(II)) 
2p(O) -> t2(Co(II)) 

*assigned based on Miedzinska 
both: direct allowed opt. BGs 

Tauc relation 
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Shinde, 200622 0.8 µm Thin Film 
(Spray Pyrolysis) 

Systonic Spectrophotometer-
119 1.2-3.5 - - 1.6 

2.1 
Indirect allow. opt. BG 
Direct allow. opt. BG Tauc relation 

Thota, 200923 powder (nanocrystaline, 
sol-gel method) 

UV-vis-NIR 
spectrophotometer (Varian 

based Cary 5000) 
0.6-6.2 

0.56 
0.85 
0.95 
1.77 
3.12 

e(Co(II)) -> t2(Co(II)) 
e(Co(II)) -> t2(Co(II)) 

e(Co(II)) -> eg(Co(III)) 
t2g(Co(III)) -> t2(Co(II)) 

2p(O) -> t2(Co(III)) 
*assigned based on Lenglet, Kim, 

XRD 

1.52 
 

2.53 

Opt. BG (subband located in energy 
gap), O->Co(II) 

Opt. BG, O->Co(III) 
Tauc relation 

Ngamou, 201024 0.325 µm Thin Film 
(CVD) 

Shimadzu UV-vis 
spectrophotometer 1.4-3.1 - - 1.52 

2.14 
O->Co(III) 
O->Co(II) Tauc relation 

Louradi, 201125 
0.4-0.5 µm Thin Film 

(spray pyrolysis, 
T=300°C-500°C) 

SHIMADZU 3101 PC UV-
VIS-NIR spectrophotometer 0.5-4.1 - - 1.48/1.51 

2.08/2.11 
T=300°C/T=500°C 

All: direct BGs Tauc relation 

Qiao, 201326 0.017 µm Thin Film optical absorption, 
Phioluminesence (PL) 0.5-6.2 

0.7 
1.6 
2.2 

(3.7) 
4.4 

Lowest energy band has three 
peaks (0.7-1.1 eV) 

 
DFT assigned 

0.76 /0.74 (PL) 
1.60 Fundamental BGs Tauc relation 

Waegle, 201427 0.01-0.06 µm Thin Film 
(magnetron sputtering) 

Shimadzu UV-2600 
spectrohphotometer 
(Shimadzu Scientific 

Instruments, Columbia, MD)/ 
FT-IR Bruker Vertex 70V 

(Bruker optics, Billerica, MA) 

0.7-3.0 

0.82 
0.94 
1.66 
2.84 

e(Co(II)) -> t2(Co(II)) 
e(Co(II)) -> eg(Co(III)) 

t2g(Co(III)) -> t2(Co(II)) 
2p(O) -> t2(Co(III)) 

*Miedzinska mentioned 

(0.7) 
1.6 

Midgap (d-d transition, not named 
BG) 
BG 

Beer’s Law 

Jiang, 201428 0.01 µm Thin Film UV/Vis-NIR 0.6-3.5 

0.82 
0.93 
1.64 
2.81 

*based on XUV? (Extreme UV) 
Pathways 

3.0 eV: 2p(O) -> eg2(Co(III)) 
 

1.6 Direct BG - 

Reddy, 201729 Thin Film (sputtering) 
UV-vis:  Shimadzu UV-3600 

plus UV-vis-NIR 
spectrophotometer 

1.0-4.1 - - 1.4 BG 
From UV/Vis (no 

further 
specification) 

Lakehal, 201830 
0.256 µm Thin Film 
(deposited, sol gel 

method) 

Shimadzu-1650 
spectrophotometer 1.4-4.1 - - 

1.5 
2.2 

2p(O) -> eg(Co(III)) 
2p(O) -> t2(Co(II)) 

*assigned based on Lit 19-22 
both: direct allowed opt. BGs 

Tauc relation 

Zhang, 202031 0.15-0.18 µm Thin Film Optical Transimission Spectra 0.6-4.1 - - 1.5 Direct fundamental opt. BG Tauc Plot 
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Figure S1. Relation between method to prepare Co3O4 sample and experimental a) band gaps 

and b) absorption bands as well as relation between film thickness of Co3O4 thin films for c) 

band gaps and d) absorption bands with triangles symbolizing CVD, squares PVD, pluses sol 

gel, circles spray pyrolysis, and diamonds undefined prepared thin films
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2 Supplementary material for computational studies from literature 
Table S2. Overview of calculations from literature
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Reference Model Method 

Band Gaps 
/ Excitation 
Energies / 

eV 

BG type/ transition 
character Other Information 

Belova, 19833 

• [CoO4]6- & [CoO6]9- 

cluster in electrostatic 
model 

• electrostatic model: 
average external field 
parameters determined by 
XPS data 

• “Watson spheres” 
 

• SCF-XαSW (self-consistent field Xα ( α = exchange 
parameter) scattered wave cluster method, spin restricted 
calculation 

• Orbital difference 

0.80 
2.18 
2.61 
5.67 
6.39 

Co(II) e→t2 

Co(II) e→4s 
Co(III) t2g→eg 

O 2p→Co(II) 4s 
O 2p→Co(III) 4s 

Co(III) might be HS due to symmetry lowering 

• Spin polarized considerations derived from results of method 
above 

0.87 
1.38 
2.18 
2.61 
5.67 

Co(III) e!
"\𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤t$! 

Co(II) t$"4s 
Co(II) e→4s 

Co(III) e!
"\𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤e!  

O 2p→Co(II) 4s 
 

 

Miedzinska, 
198732 • Unit cell 

• Semi-empirical form of MOs, VS1E, Wolfberg-Helmhotz 
approximation 

• Energies of separated atom orbitals determined first, then 
interaction energies of overlapping orbitals 

• Resulting energy differences assigned to observed 
spectroscopic transitions 

• 1. Orbital energies of isolated gas phase ions are from 
empirical ionization potentials 

• 2. Geometry of the ion in lattice is recognized and the orbitals 
split if necessary into sets of lower degeneracies 

• 3. Orbital VS1E values are adjusted for Pauling 
electroneutrality effect permitting partial reduction of ions 
(Co(II/III) and O(-II)) 

• energy level diagram via Wolfgang-Helmholtz approximation 
for [Co2+O2-

4] and [Co3+O2-
6] 

• 6x [Co2+O2-
4] with one center [Co3+O2-

6], orbitals of 6 units 
Co(II) are linear combined to give group orbitals of ligands, 
overlap Co(III) orbitals 

0.8 
1.0 
1.3 
2.1 

Co(II) e→t2 

Co(II) t2→Co(III) e 
Co(III) t2g→Co(II) t2 

O 2p→Co(II) t2 

Distortion removes orbital degeneracies 

Wang, 200633 • Periodic Boundary 
Conditions 

• VASP 
• PAW 
• Energy cut-off: 550 eV 
• Spin-polarized 
• GGA 
• GGA+U = 3.3 eV 

0.7 
1.6 

GGA 
GGA+U 

GGA: 2.39 µ% 
GGA+U: 2.67 µ% 
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Walsh, 200734 

• Co-Fe-Al oxide spinel 
systems 

• Periodic boundary 
conditions 

• 14 atom primitive spinel 
unit cell 

• special quasirandom 
structure (SQS) model 
used for random 
occupation in inverse 
structure 

• VASP 
• Plane wave function set with 500 eV upper energy threshold 
• 6x6x6 k-point grid for Brillouin zone 
• projecter augmented wave method used to represent valence-

core interactions 
• spin polarized 
• scalar relativistic approximation 
• Gradient corrected DFT with the Co & Fe 3d (3d robtials 

highly correlated -> U necessary) states treated with on-site 
correction for Coulomb interaction (DFT+U) 

• PBE+U 
• U tested from 2 to 5 eV -> electronic structure quite 

independent, U=2 eV for Co 3d and U=3 eV for Fe 3d chosen 
because BGs in region of experimental data 

• BG from difference in DOS 

Co3O4 
1.23 
1.51 
1.67 

 
Al2CoO4 

2.32 
2.61 
2.65 

Co3O4 
X-X Direct trans. 
Γ-X indirect trans. 
Γ- Γ Direct trans. 

 
 

Al2CoO4 
Direct transition 

Indirect transition 
Direct transition 

 
Called Electronic BG 

VBM = mixture of states td 
Co 3d and O 2p 

CBM = oh Co 3d 

• Electronic BG of Co3O4 and Fe3O4 
do not change significantly if 
tetrahedral sites are replaced 
(M2AlO4 – inverse spinel) but 
increase greater than 1 eV if 
octahedral sites are replaced 
(MAl2O4 – normal spinel) 

• Co Al2O4 seems to be most suitable 
for PEC catalysis 

• Magnetic moments available 

Xu, 200935 • Periodic boundary 
conditions 

• DMol3 program package in Materials Studio of Accerys Inc. 
• PBE 
• Double-numerical basis with polarization functions (DNP) 
• For O Atoms all electron basis sets, for Co cores with ECPs 
• Fermi smearing of 0.01 Hartree, cutoff energy 4.5 Å 
• SCF convergence 10-6 Hartree 
• Optimized geometry 
• Spin-polarized approach 
• Brillouin zone 5x5x5 Monkhorst-Pack grids for bulk (k points) 

1.75 (↑) 
 

1.92 (↑) 
2.06 (↑) 

 
2.2 (↓) 
2.9 (↓) 

3.3 

X-X Direct gap, O 
2p→Co(II) t2g 
Γ-X Indirect gap 

Γ- Γ Direct gap, Co(III) 
t2g→Co(II) t2g 

 
O 2p→Co(II) t2g 
O 2p→Co(III) eg 

Co(III) t2g→Co(II) t2g 

• bulk shows antiferromagnetic 
properties 

• Antiferromagnetic (Co(II) = 2.631µ% 
• Experimental value Co(II) = 3.26 µ% 
• Strong hybridization of the Co3+ 3d 

states with O 2p states 

Chen, 201136 

• Periodic boundary 
conditions 

• 14-atom primitive unit 
cell of spinel structure 

• conventional cubic cell 
with 56 atoms and 
tetragonal supercell 
containing 112 atoms 
considered 

• Quantum Espresso package: DFT-GGA and GGA+U 
• Spin-polarized 
• PBE 
• Norm conserving Troullier-Martins pseudopotantials 
• Plane-wave kinetic energy cutoff = 120 Ry 
• 8x8x8 k-point grid convcerged sampling of Brillouin zone 
• U(Co(II)) = 4.4 eV 
• U(Co(III)) = 6.7 eV 
• PBE0: localized Wannier orbitals obtained through a unitary 

transformation of delocalized Bloch states corresponding to 
occupied bands, maximal localized Wannier functions 
(MLWFs) 

PBE 
0.30 
0.75 
0.94 
1.39 

 
PBE+U 

1.96 
2.41 
2.81 
3.25 

 
1.67 
2.02 
2.16 

 
PBE0 
3.42 

 

PBE 
X - X Direct BG 
Γ - X Indirect BG 
X – Γ Indirect BG 
Γ - Γ Direct BG 

 
PBE+U (4.4/6.7) 
X - X Direct BG 
Γ - X Indirect BG 
X – Γ Indirect BG 
Γ - Γ Direct BG 

 
PBE+U=4.4 
PBE+U=5.9 
PBE+U=6.7 

 
PBE0 

Minimum BG 

• Valence Band two subbands: lower 
energies dominated by O 2p and 
upper by Co3+ d, smaller amounts of 
Co2+ present as well 

• Bottom of conduction band: Co2+ 
and Co3+ 3d 

• Co(II),PBE = 2.64 µ%/ J1=-2.5x10-3 
• Co(II),PBE+U = 2.84 µ%/ 

J1=1.0x10-4 
• Co(II),PBE0 = 2.90 µ%/ J1=-5.0x10-

3 
• Exp = = 3.26 µ%/ J1=-6.26x10-4 
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Montoya, 201137 • Periodic ab-initio 

• VASP 
• PAW 
• Plane-wave expansion truncated cut-off energy of 550 eV 
• BZ integration: 6x6x6 Monkhorst-Pack k-points grid 
• PBE 
• PBE+U = 3.3 eV 

0.1 
1.6 

PBE 
PBE+U 

• PBE+U: 1.6 µ% 

Qiao, 201326 • Periodic boundary 
conditions (?) 

• DFT and DFT+U tested 
• DFT without U gives best structure 
• DOS 
• Orbital difference 
• Oscillator strength (p-d magnitudes stronger than d-d) 
• U distorts band structure 

 
 

0.83 
0.95 
1.04 
1.64 
1.84 

 
2.62 
3.66 
4.69 
5.8 

Direct tranistions (first is 
BG) 

Co(II) eg→Co(II) t2g (↓) 
Co(II) eg→Co(III) eg (↓) 
Co(II) eg→Co(III) eg (↑) 
Co(III) t2g →Co(II) t2g (↓) 

Co(III) t2g →Co(III) eg 
 

O 2p(I)→Co(II) t2g (↓) 
O 2p(I)  →Co(III) eg 

O 2p(II)  →Co(II) t2g (↓) 
O 2p(II)  → Co(III) eg 

 

• CoO a classic highly correlated Mott 
insulator 

• Co3O4 did not exhibit such strong 
electron correlations and its 
electronic structure can be well 
described by standard DFT 

• First five transitions are pure d-d 
type tranistions either inside a 
homovalent Co ion or between two 
heterovalent Co ions depending on 
the spin orientation 

• d-d transitions would be nominally 
forbidden for non-hybridized d 
bands. However, a non-zero 
transition matrix element between 
the initial and final states may result 
from hybridization of the O 2p and 
Co 3d orbitals, which will lightly 
relax the parity selection rule and 
result in a non-zero transition 
probability 

• lifetime broadening of the electron–
hole pairs 
 

Lima, 201438 • Periodic boundary 
conditions 

• WIEN2k 
• Full-potential linear augmented plane wave (FP-LAPW) 

method 
• Plane waves limited by cut-off at Kmax=8.0/RMT 
• Charge density was Fourier-expanded up to Gmax=14 
• k-point grid: 8x8x8 well converged sampling of Brillouin zone 
• GGA-PBE 
• mBJ (semilocal potential) 
• B3PW91 
• Optimized structure 
• TDOS, PDOS (total and partial electronic density of states) 
• Absorption curve: electric-dipole allowed transitions from the 

populated Kohn-Sham states 

GGA-PBE 
0.35 
0.80 
0.95 
1.35 

 
mBJ 
2.84 
3.00 
3.20 
3.40 

 
B3PW91 

GGA-PBE 
X - X Direct BG 
Γ - X Indirect BG 
X – Γ Indirect BG 
Γ - Γ Direct BG 

 
mBJ 

X - X Direct BG 
Γ - X Indirect BG 
X – Γ Indirect BG 
Γ - Γ Direct BG 

 
 

B3PW91 

• Dominated by: Co(II) eg→Co(II) t2g 

and Co(III) t2g →Co(III) eg 
• Superposition of both optical 

transitions 
• Consequently, the calculations 

predict that the crystal field splitting 
at both sides are of the same 
magnitude 
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1.55 
2.00 
2.40 
2.80 

 
1.86, 2.4, 
2.9 (Abs 
peaks) 

X - X Direct BG 
Γ - X Indirect BG 
X – Γ Indirect BG 
Γ - Γ Direct BG 

 
Dominated by  

Co(II) eg→Co(II) t2g 

And 
Co(III) t2g →Co(III) eg 

 

Singh, 201539 • Periodic boundary 
conditions 

DFT: 
• VASP 
• PBE 
• PBE+U 
• HSE06 (range-separated exchange-correlation functional) 
• Valence electrons described by Kohn-Sham single-electron 

orbitals 
• Plane-wave bases with an energy cut-off of 500 eV 
• Core electrons were defined within PAW methodology 
• PBE & PBE+U: k point grid 8x8x8 
• BZ integration done with tetrahedron method with Blöchl 

corrections 
• HSE06: k point grid 4x4x4 
• BZ: integrated using Gaussian smearing with smearing width 

0.01 eV 
• U(Co(II) = 4.4 eV 
• U(Co(III)) = 6.4 eV 
• HSE06: HF exchange 25%, 20%, 17%, 15%, 13%, 10%, 5% 
• Investigation between fundamental and optical band gap: 

dielectric tensor calculated in PAW framework 
• COHPs (crystal orbital Hamiltonian populations) – LOBSTER 

program 
Many-body Green’s function (GW) 

• GW approximation requires input of initial-guess quasiparticle 
energies and wave functions which are usually taken from KS-
DFT 

• ‘perturbation theory improvement to DFT’ 
• G0W0: perturbative non-self-consistent GW method 
• GW: self-consistent GW approach 
• QSGW: quasiparticle self-consistent GW 

o Sc-GW0: QP eigenvalues & WF both updated in G 
o Sc-GW: QP eigenvalues & WF both updated in G 

& W 
• Input WF & energies for G0W0 obtained from DFT calc. on 

bulk unit cell using PBE, PBE+U, HSE06 (5%) 
• :G0W0: k point grid 4x4x4 

 
0.34 
2.45 
0.78 
0.79 

 
 

0.82 
0.94 
0.98 
0.98 

Direct BG 
PBE 

PBE+U 
HSE06 (5%) 

Sc-GW0 
 

Indirect BG 
GW0 
GW 

G0W0 
Sc-GW 

• linear dependency of BG on HF 
exchange 

• magnetic moments available 
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• q point mesh of response function: 2x2x2 
•  

 

Kaptagay, 
201540 

• periodic slab model 
(infinite in two 
dimensions) 

• bulk contains 2 formula 
unites, i.e. 14 ions 

• VASP 
• PAW 
• PBE+U(=3 eV) 
• Standard Monkhorst-Pack grid 4x4x4 k point sampling mesh 

for bulk 
• Cut-off energy 600 eV 
• Methfessel-Paxton smearing with 0.1 eV 

 

1.60 Band gap • Magnetic moment Co(II) 2.63 µ% 

Lima, 201641 
• Periodic boundary 

conditions 
• Normal spinel structure 

• WIEN2k 
• FP-LAPW 
• With and without SOC 
• PBE 
• PBE+U 
• B3PW91 
• K points: 8x8x8 
• SOC via second-variation procedure using scalar relativistic 

eigenfunctions 

wo/wSOC 
0.72/0.86 
1.11/1.26 
1.34/1.50 
1.49/1.66 
1.86/2.04 

 
1.60/1.65 
2.04/2.12 
2.42/2.48 

Wo/wSOC 
B3PW91 (α=5%) 

B3PW91 (α=10%) 
B3PW91 (α=13%) 
B3PW91 (α=15%) 
B3PW91 (α=20%) 

 
PBE+U=3.0/3.0 Co(2/3) 

PBE+U=4.4/4.4 
PBE+U=4.4/6.7 

Wo/wSOC 
2.33/2.33 µ% J1= -3.2/-2.8 µ eV 
2.40/2.40 µ% J1= -5.3/-3.5 µ eV 
2.43/2.43 µ% J1= -6.5/-6.3 µ eV 
2.45/2.45 µ% J1= -7.3/-7.6 µ eV 

2.49/2.49 µ% J1= -11.8/-11.2 µ eV 
 

2.35/2.36 µ% J1= -0.3/-1.8 µ eV 
2.40/2.38 µ% J1= -1.9/-0.5 µ eV 
2.42/2.42 µ% J1= -1.1/-4.3 µ eV 

 
AFM always more favourable not influence by 

U or α or SOC 

Zaki, 201842 • Periodic Boundary 
Conditions 

• CASTEP program package in Material Studio of Accelrys Inc 
• PBE+U = 3.5 eV ( GGA-PBEsol+U) 
• Plane wave basis with kinetic energy cut-off of 380 eV 
• Monkhorst-Pack grid 6x6x6 k-points 
• PDOS 

1.26 
1.77 
1.61 
2.22 

X - X Direct BG 
Γ - X Indirect BG 
X – Γ Indirect BG 
Γ - Γ Direct BG 

 

• Dielectric function available 
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Sousa, 201943 • Periodic Boundary 
Conditions 

• WIEN2k 
• PBE 
• Becke-Johnson XC 
• FP-LAPW (full potential augmented plane wave) 
• Kmax = 8 / RMT(O) 
• K point grid: 8x8x8 
• Charge density foruier expanded Gmax = 12 
• SIESTA: magnetic properties under pressure 
• Basis et: finite range pseudoatomic orbitals (PAO’s) of 

Sankey-Nicklewsky 
• Double-zeta Plus Ploarization (DZP) 

0.35 
0.06 
1.33 
0.96 
2.60 

PBE 
LDA 

B3PW91 
BJ 

mBJ 

2.20 µ% 
1.94 µ% 
2.42 µ% 
2.26 µ% 
2.62 µ% 

Zhandun, 202044 • Periodic Boundary 
Conditions 

• VASP 
• PAW 
• PBE 
• PBE+U=4.5 eV 
• G0W0 
• Cut-off energy 500 eV 
• 8x8x8 Monkhorst-Pack mesh of k points 

0.2 
0.35 
0.6 

PBE 
PBE+U 
G0W0 

•  

Cadi-Essadek, 
202145 

• Periodic Boundary 
Conditions 

• VASP 
• PAW 
• PBE 
• Long-range dispersion interaction DFT-D3 
• PBE+U 
• 8x8x8 k point mesh 

0.35 
0.55 
0.75 
0.98 
1.21 
1.43 
1.64 
1.86 
2.07 
2.28 
2.46 

PBE+U=0.0 
PBE+U=0.5 
PBE+U=1.0 
PBE+U=1.5 
PBE+U=2.0 
PBE+U=2.5 
PBE+U=3.0 
PBE+U=3.5 
PBE+U=4.0 
PBE+U=4.5 
PBE+U=5.0 

2.27 µ% 
2.36 µ% 
2.43 µ% 
2.49 µ% 
2.53 µ% 
2.58 µ% 
2.61 µ% 
2.65 µ% 
2.68 µ% 
2.71 µ% 
2.73µ% 
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2.1 Summary of computational studies 

Besides the consulted experimental investigations, multiple published computational studies 

investigated the magnitude and nature of the different candidate band gaps in Co3O4. Figure S2,33, 36, 37, 

39-41, 43-45 Figure S3,34-36, 38, 42 and Table S33, 26, 32, 35, 38 summarize a selection of these studies. Table S2 

provides further details on all references. An outline concerning noteworthy outcomes from all these 

studies is provided below. 

 

2.1.1 Summary of computational studies targeting a selected band gap with different 
methods 

 
Figure S2 summarizes literature references targeting one selected band gap using different DFT 

methods with periodic boundary conditions. Most of these calculations33, 36, 37, 40, 43-45 focus on the 

experimental band gap at 1.51 eV, based on the works of Shinde et al.22 and Kim et al.46 Some 

calculations41 target the band gap at 2.14 eV, while others38, 39, 44 consider the experiment of Qiao et al.26 

and its band gap value of 0.74 eV. 

 

 
Figure S2. Overview on calculated band gaps found in literature.33, 36, 37, 39-41, 43-45 Unfilled circles: 

indirect band gaps. Filled circles: direct band gaps. Green circles: Band gap including SOC. 
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Most studies of the band gap of Co3O4 use GGA functionals, most commonly PBE.37, 39-41, 43-45 

GGA functionals are known to underestimate the experimental band gap.47 In many cases, the calculated 

band gap is close to zero.37, 39, 43-45 To overcome this problem, the effective on-side potential U (DFT+U) 

is often used to adjust the calculated band gap energies towards the experimental value. This approach 

is commonly used for highly correlated materials such as Co3O4.39 

Studies such as Cadi-Essadek et al.45 have shown that applying an effective on-site potential U 

can adjust the calculated band gap energies of Co3O4 towards the experimental value, with the band gap 

increasing linearly with increasing U. Various approaches, such as using different values of U for Co(II) 

and Co(III), have been explored.36, 39 While this method is efficient in obtaining the desired band gap 

value, it can also lead to undesirable modifications in the electronic structure of the system.39 

Lima et al.41 found that the band gap calculated with hybrid functionals has a linear relationship 

with the percentage of Hartree-Fock exchange, similar to GGA+U, but without altering the electronic 

structure. They also observed a slight increase in the band gap after incorporating spin-orbit coupling. 

Singh et al.39 and Zhandun et al.44 used Green’s Function methods to study the band gap, and their results 

agree with the first band gap at about 0.78 eV. While all DFT methods in Figure S2 predict a direct band 

gap, Green Function approaches produce ambiguous results with indirect or direct character. 

To determine the band gap and its character, most of the described studies use density of states 

(DOS) calculations, where the band gap is defined as the difference between the valence band maximum 

and the conduction band minimum. However, without considering the exciton binding, this approach 

provides only the fundamental band gap, not the optical one. Nevertheless, this method is valid for 

(meta-)GGA functionals because they lack XC energy, resulting in the same fundamental and optical 

band gap as previously studied.48 
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2.1.2 Summary of computational studies targeting multiple band gaps with different 
methods 
 

The studies34-36, 38, 42 summarized in Figure S3 have identified more than one band gap by 

periodic calculations aimed in particular at the experimental band gaps at 1.51 eV and 2.14 eV. 

 
Figure S3. Overview on calculated band gaps found in literature including more than one band gap.34-

36, 38, 42 33, 36, 37, 39-41, 43-45 Unfilled circles: indirect band gaps. Filled circles: direct band gaps. 

 

In all cases two direct band gaps have been calculated. In addition, one or two indirect band 

gaps were identified between the two direct band gaps. The lower direct band gap has the character 

X→X, while the higher one has the character Γ → Γ where X and Γ describe different high symmetry 

points in the Brillouin zone. The indirect band gaps have X→ Γ and Γ→X characters. As with the 

previously discussed results involving only one band gap, there is no general consistency in the resulting 

band gap values. 
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2.1.3 Summary of computational studies characterizing absorption bands and band 
gaps 

 
Various studies discussed the transition character of the absorption bands and band gaps in the 

orbital picture. Table S3 summarizes a selection of studies.3, 26, 32, 35, 38 

 

Table S3. Transition character based on calculations. Transition energy in eV. 
 Belova, 19833 Belova, 19833 

(spin) 

Miedzinska, 

198732 

Xu, 200935 Qiao, 201326 Lima, 

201438 

Method 

SCF-XαSW, 

spin restricted 

Data 

reconsidered 

with spin 

Semiempirical 

MO (VS1E) 

PBE/DNP, 

spin polarized 

DFT (GGA) B3PW91/FP-

LAPW, 

dielectric 

function 

Model 

[CoO4]6- & [CoO6]9- cluster in 

electrostatic model (external 

field) 

Unit Cell Periodic Periodic Periodic 

Co(II) e→t2 0.80 - 0.8 - 0.83 (↓) 1.86/2.4/2.9 

Co(III) t2g→eg 2.61 0.87 - - 1.84 1.86/2.4/2.9 

Co(III) eg  →eg - 2.61 - - - - 

Co(II) t2→Co(III) 

eg 

- - 1.0 - 0.95(↓)/1.04(↑) - 

Co(III) t2g→Co(II) 

t2 

- - 1.3 (2.06(↑)/)3.3(↓) 1.64 - 

O 2p→Co(II) t2 - - 2.1 (1.75(↑)/)2.2(↓) 2.62(↓)/4.69(↓) - 

O 2p→ Co(III) eg - - - 2.9 (↓) 3.66/5.80 - 

Co(II) e→4s 2.18 1.38 - - - - 

Co(III) t2g→4s - - - - - - 

O 2p→Co(II) 4s 5.67 5.67 - - - - 

O 2p→Co(III) 4s 6.39 - - - - - 

 

 

Xu et al.35 have assigned the X→X transition to the LMCT orbital transition, O 2p→Co(II) t2g, 

and Γ → Γ to Co(III) t2g→Co(II) t2, resulting in band gaps of 1.75 eV and 2.06 eV, respectively. 

 

Miedzinska et al.49 identified a transition at 1.30 eV as MMCT Co(III) t2g→Co(II) t2, while the 

next higher transition at 2.10 eV was assigned to LMCT O 2p→Co(II) t2g. Two additional transitions 

were identified at 1.0 eV as MMCT Co(II) t2→Co(III) eg and at 0.8 eV as a ligand field transition Co(II) 

e→t2. The results presented in Miedzinska et al. 49 were obtained using a semiempirical MO method 

with a unit-cell model and not with periodic boundary conditions, unlike the more recent studies. 

Belova et al.3 also observed the ligand field transition Co(II) e→t2 at an energy of 0.80 eV. They 

used an SCF-XαSW approach with isolated [Co(II)O4]6- and [Co(III)O6]9- clusters in an external 

electrostatic field. A more recent study by Qiao et al.26 utilizing DFT (GGA) with periodic boundary 
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conditions also located the same transition at a similar energy of 0.83 eV and assigned it as the band 

gap. 

The sequence of transitions presented in the periodic DFT study by Qiao et al.26 agreed 

reasonably well with the earlier study of Miedzinska et al.49. Qiao et al.26 predicted an MMCT Co(II) 

t2→Co(III) eg transition at 0.95 eV, followed by Co(III) t2g→Co(II) t2 at 1.64 eV, the ligand field 

transition of Co(III) at 1.84 eV, and finally the LMCT O 2p→Co transitions of Co(II) and Co(III) at 

2.62 eV and 3.66 eV, respectively. The intensity of the transitions increased with increasing excitation 

energy, except for the ligand field transition of Co(II), which had a higher intensity than the MMCT 

Co(II) t2→ Co(III) eg. 

The established transition characters have been challenged by Lima et al.38. They argue that the 

MMCT transitions are unlikely to occur at energies as low as the band gap values. They also made a 

similar claim for the LMCT transitions. Their absorption spectrum was calculated using the dielectric 

function based on DOS results obtained with the hybrid functional B3PW91 and periodic boundary 

conditions. They identified the resulting absorption bands at 1.86 eV, 2.4 eV, and 2.9 eV as a 

superposition of the ligand field transitions Co(II) e→t2 and Co(III) t2g→eg, which is, therefore, also the 

expected character for the two respective band gaps. 
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3 Supplementary material for TD-DFT calculations 

 
Figure S4. Excited states of Co2ZnO4 for system size 2t4o computed with TD-DFT with a) only singlet, 

b) only triplet, and c) spin-orbit coupled states. Level of theory: PBE0/def2-QZVPP. Color code: Co(III) 

3d→3d triplet excitation (turquoise), Co(III) 3d→3d singlet excitation (blue), Co(III) 3d→Co(III) 3d 

MMCT (gray), O 2p→Co(III) 3d LMCT (green). 

 

 
Figure S5. TD-DFT convergence scheme of Co2ZnO4 with PBE0/DKH-def2-tzvp. Color coding: 

Co(III) 3d t2g→eg triplet (turquoise) and singlet excitation (blue), Co(III) 3d→Co(III) 3d MMCT (gray), 

O 2p→Co(III) 3d LMCT (green); dark states (dotted line), "potentially" non-dark states (dashed line), 

non-dark states (solid line). 
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Figure S6. Different TD-DFT approaches to compute the states in Al2CoO4. Top left: high-spin (HS) 

approach, bottom left: HS with spin-flip (SF) approach, top right: broken-symmetry (BS), bottom right: 

BS with SF. Color coding: Co(II) d→d excitation (red), Co(II) d→d excitation with SF (turquoise), 

Co(II)→Co(II) MMCT (yellow), O 2p→Co(II) 3d LMCT (green), Co(II) 3d→4s (purple); dark states 

(dotted line), ‘weakly’ visible states (dashed line), visible states (solid line). BGopt1 about 1.4 eV (Co(II) 

d→d) and BGopt2 about 1.8 eV (Co(II) d→d). Level of theory: PBE0/def2-QZVPP. 

 
Figure S7. a) Broken-symmetry TD-DFT convergence scheme of Co3O4 with PBE0/DKH-def2-tzvp. 

b) Comparison Co ligand field excitations in Co3O4 (left) vs. [Co2ZnO4 + Al2CoO4] (right) computed 

with PBE0/DKH-def2-tzvp. Color coding: Co(II) 3d e→t2 excitation (red), Co(III) 3d t2g→eg triplet 

(turquoise) and singlet excitation (blue), Co(III)→Co(III) M'M'CT  (gray), Co(II)→Co(II) MMCT 

(yellow), Co(II)→Co(III) M'MCT/ M'MCT (black); dark states (dotted line), ‘potentially’ non-dark 

states (dashed line), non-dark states (solid line). 
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3.1 Comparison of single-reference methods (DFT, CIS, EOM-CC) and Literature 
Based on the previous convergence model that showed that the energy range of the three band 

gaps in Co3O4, which are at 0.78 eV, 1.51 eV, and 2.14 eV experimentally, can be approached as the 

sum of the equivalent Al2CoO4 and Co2ZnO4 models, this section will reinvestigate the energy space of 

the two latter models with different DFT functionals as well as with CIS and EOM-CC to find a first 

explanation for the three band gaps. The approach is justified since a previous study48 showed that the 

band gap converges for the DFT and EOM-CC models in identical ways. 

As test calculations with reduced basis sets show, the current systems also converge 

equivalently for the different methods. Exceptions are the (meta-)GGA functionals. These functionals 

do not predict distinct bands between 0 eV and 3.5 eV. As the system size increases, the excited states 

build a continuum. Figure S7 demonstrates this exemplarily for the PBE functional for Co3O4, Al2CoO4, 

and Co2ZnO4. Although this indicates that this class of functionals cannot predict the excitation energies 

with the chosen approach, likely because of the missing XC functional crucial for TD-DFT excitation 

calculations, some features nevertheless converge with system size. Therefore, an interpretation of the 

converged potential band gaps is still possible, and the potential states will be considered in the 

following discussion of the results. 

 

 
Figure S8. Excited states of increasing system size computed with PBE/def2-QZVPP for 

Co2ZnO4, Al2CoO4, and Co3O4. 

 
The discussed PBE0 model, representative of all methods except (meta-)GGA, showed 

immediate convergence of the ligand field transitions in Co(II) and Co(III) at the smallest system sizes 

tested. However, the MMCT transitions in broken-symmetry Al2CoO4 models and all states in the (meta-

)GGA models only converge for 4t8o. Therefore, for consistency, Figure S8 shows the first excited 

states of each absorption band representing the ligand field transitions and MMCT for QC size 4t8o. An 

exception is the EOM-CC result, calculated only for the isolated Co sites due to computational 

limitations and represents only the ligand field transitions. Since there is no option to calculate EOM-

CC as broken-symmetry, the given EOM-CC Al2CoO4 result is high spin. 
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The empty circles in Figure S8 symbolize dark states with oscillator strengths between 0 and 

0.0001, the half-filled circles represent states with oscillator strength between 0.0001 and 0.001, and the 

filled circles are non-dark states. The oscillator strength varies somewhat with the functionals. 

Nevertheless, all methods show a consistent picture regarding the type of excitations and their visibility. 

 

 
Figure S9. Results of excited states for TD-DFT for a) Co2ZnO4 and b) Al2CoO4 for QC size 4t8o 

(Exception: EOM-CC, QC sizes are 1o and 1t, respectively). Basis sets: def2-QZVPP. Color coding: 

Co(II) 3d e→t2 (red), Co(III) Co(III) 3d t2g→eg triplet (turquoise) and singlet excitations (blue), 

Co(III)→Co(III) MMCT (gray), Co(II→Co(II) MMCT (yellow). Dark states (empty circle), 

“potentially” non-dark states (half-filled circles), non-dark states (filled circles). 

 

In Figure S15, the band calculated with PBE0 at 0.9 eV, which is visible in the high spin case, 

and at 1.0 eV, which occurs in the broken symmetry model, were initially combined into one band for 

simplicity. However, they are shown as two bands in Figure S8b. While they overlap strongly for all 

hybrid functionals, they are distinguishable for double hybrid functionals and CIS. In addition, Figure 

S9 shows the results for CIS for the high spin case (2S+1=7) and the broken-symmetry cases (2S+1=5), 

(2+1=3), and (2+1=1), showing that all bands in the broken-symmetry model are original to the method 

and have slightly different energies than those in the high spin case. The intermediate spin states provide 

a combined picture that includes all states. However, since the affected bands still overlap significantly 

in all methods, Figure S8b shows only the lowest states in each case, as they are only relevant for the 

determination of the band gap. 
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Figure S10. First excited states of ligand field transitions in Al2CoO4 with system size 2t4o computed 

as high spin (2S+1=7), intermediate spins (2S+1=5 and 2S+1=3), and open singlet (2S+1=1) with PBE0 

and CIS. 

 

In order to identify the source of the optical band gaps at 0.78 eV, 1.51 eV, and 2.14 eV, it is 

necessary to consider the calculated energy range from 0 eV to 3 eV. This range only includes the ligand 

field transitions in the tetrahedral Co(II) and distorted octahedral Co(III) centers for all hybrid 

functionals, double-hybrid functionals, CIS, and EOM-CC, indicating that they are likely to be the origin 

of the band gaps. The MMCT transitions typically occur at energies higher than 3 eV. Based on the 

oscillator strength, the ligand field transitions in Co(II) sites are (potentially) non-dark states and are 

dipole-allowed. In contrast, the Co(III) ligand field transitions in the same energy range are all dipole-

forbidden dark states. However, the Co(III) ligand field transitions may contribute to or generate the 

band gaps by means of intensity borrowing mechanisms or by enhancing the Co(II) ligand field 

transitions, as indicated in Figure S15. 

All (meta-)GGA functionals agree with the other methods that the band gaps at 0.78 eV and 

1.51 eV originate from ligand field transitions. However, for the band gap at 2.14 eV, these functionals 

suggest the possibility that it may originate from a combination of Co(II)→Co(II) MMCT and dark 

singlet ligand field transitions of Co(III). 

The experimental results do not exclude either perspective, the (meta-)GGA functionals or the 

other methods. Martens et al.4 observed absorption bands at 0.8 eV, 1.6 eV, and 2.6 eV, which can be 

related to Co(II) or Co(III) or both. Kim et al.46 observed that the features at 1.65 eV and 2.4 eV are 

essential for Co(II) sites, which could be due to the ligand field transition of Co(II) or the MMCT 

Co(II)→Co(II), among other possibilities. 

Lima et al.38 found that the band gaps at 1.51 eV and 2.14 eV computed with the hybrid 

functional B3PW91 originate from a superposition of ligand field transitions local to the Co(II) and 

Co(III) centers, which supports the current hybrid and double-hybrid functional results. In contrast, Xu 



 24 

et al.35 applied PBE and suggested Co(III)→Co(II) MMCT for the band gap at 2.14 eV, in agreement 

with the (meta-)GGA functionals used in this study. 

All computational studies that analyzed the first excited state in the energy range of the band 

gap at 0.78 eV, such as Belova et al.3, Miedzinska et al.49, and Qiao et al.26, agree that it can be 

characterized as a Co(II) ligand field transition. This agrees with all the methods used in the present 

study, as the first Co(II) ligand field transition always has a lower energy than the first Co(III) ligand 

field transition. Therefore, this transition can be considered the first excited state of Co3O4. 

The transition types generally agree among the different methods, except for a few exceptions. 

However, their quantitative results are inconsistent and, therefore, inconclusive overall. None of the 

methods satisfactorily agrees with the experiments, and ambiguities remain concerning the assignment 

of states to specific band gaps. 
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4 Supplementary material for post-Hartree Fock calculations 
Table S4. Dependence of the excited states on the basis set for different methods. Example system: 1t. 

 State def2-

SVP 

def2-

TZVP 

def2-

QZVPP 

cc-

pVDZ 

cc-

pVTZ 

cc-

pVQZ 

cc-

pV5Z 

PB
E

0 

3d→3d (1) 0.899 0.945 0.976 0.897 0.957 0.979 0.987 

3d→3d (2) 1.736 1.744 1.763 1.718 1.749 1.766 1.773 

LMCT 6.386 6.740 6.653 6.085 6.629 6.681 6.695 

EO
M

-

C
C

 

3d→3d (1) 0.444 0.494 0.529 0.485 0.504 0.525 0.530 

3d→3d (2) 1.699 1.751 1.733 1.759 1.731 1.748 1.755 

LMCT 7.471 7.422 7.478 7.255 7.395 7.610 7.700 

SA
-

C
A

SS
C

F 3d→3d (1) 0.415 0.441 0.442 0.413 0.434 0.443 - 

3d→3d (2) 0.717 0.763 0.764 0.712 0.748 0.766 - 

3d→3d (3) 2.746 2.749 2.749 2.730 2.743 2.748 - 

N
EV

PT
2 3d→3d (1) 0.481 0.545 0.547 0.500 0.539 0.550 - 

3d→3d (2) 0.818 0.923 0.929 0.843 0.910 0.936 - 

3d→3d (3) 2.406 2.351 2.262 2.356 2.281 2.235 - 

M
R

-

EO
M

-

C
C

 

3d→3d (1) 0.449 0.487 0.537 0.428 0.471 0.487 - 

3d→3d (2) 0.763 0.840 0.930 0.718 0.786 0.813 - 

3d→3d (3) 2.324 2.210 2.284 2.228 2.152 2.144 - 

 

 

 
Figure S11. Description of the first excited triplet (turquoise) and singlet (blue) states of ligand field 

transitions in the isolated Co(III) site 1o in terms of single configurational methods (PBE0, EOM-CC, 

CIS) and with multiconfigurational methods (SA-CASSCF, NEVPT2, MR-EOM-CC, ICE-CI). Dark 

states (empty circle), “potentially” non-dark states (half-filled circles), non-dark states (filled circles). 
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Figure S12. First excited states of ligand field transitions in Al2CoO4 with system size 2t4o computed 

as high spin (2S+1=7), intermediate spins (2S+1=5 and 2S+1=3), and open singlet (2S+1=1) with SA-

CASSCF. 

 

 
Figure S13. Energy difference between “neutral” and “ionic” antiferromagnetic ground states with 

increasing basis set size computed for system size 2t4o with NEVPT2. 
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Figure S14.  Excitations including double excitations in the different cobalt oxides calculated with ICE-

CI/cc-pVTZ. 

 

4.1 Comparison of different multireference methods 
The MR-EOM-CC method has provided promising results in explaining the electronic 

properties of the different tetrahedral Co sites in the "ionic" and "neutral" antiferromagnetic model 

combined with the single octahedral Co(III) site. The calculated band gaps are in good agreement with 

experimental data, suggesting the validity of this approach. However, other multireference methods and 

their performance are worth considering, especially since the MR-EOM-CC method can only handle 

one tetrahedral Co site at a time. Other methods, such as SA-CASSCF/NEVPT2, as shown in the 

comparison above, or SA-CASSCF/CASPT2 can handle two Co sites simultaneously, making them 

potentially more representative of the actual antiferromagnetic states. Therefore, a comparison between 

MR-EOM-CC and other multireference methods could provide further insight into the electronic 

properties of these systems. 

Figure S14 shows the multireference results for Co2ZnO4 and Al2CoO4, where Co2ZnO4 

represents the octahedral and Al2CoO4 represents the tetrahedral Co sites in Co3O4. It should be noted 

that the results for Co2ZnO4 are obtained for only one Co(III) site, which has been demonstrated to be 

sufficient for all the methods thus far. However, for Al2CoO4, SA-CASSCF calculations are performed 

independently and with perturbation via NEVPT2, CASPT2, and DCD-CAS(2) for a two-center model. 

The "ionic" antiferromagnetic states are adjusted towards an optimal ideal superposition to the "neutral" 

state. The ICE-CI and MR-EOM-CC results are obtained for only one tetrahedral Co site at a time, with 

MR-EOM-CC being computationally limited. In contrast, ICE-CI is limited because it includes most 

valence oxygen orbitals. This is done to study the influence of orbitals other than the 3d orbitals, which 
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are only included in the active space in the other cases. The same applies to the ICE-CI result of 

Co2ZnO4. 

To ensure clarity in the results presented in Figure S14, all excitations with double excitation 

characters in the octahedral Co(III) site have been excluded. Similarly, only the excitations relevant to 

the band gap are shown for the tetrahedral sites, along with the lowest dark state of the "neutral" 

antiferromagnetic case for reference. 

 
Figure S15. Results of ligand field excited states for mulifconfiguration/-reference methods for a) 

Co2ZnO4 and b) Al2CoO4. Color coding: tetrahedral Co 3d e→t2 excitation for “neutral” (red) and for 

"ionic" (purple) antiferromagnetic states, octahedral Co 3d t2g→eg triplet (turquoise) and singlet (blue) 

excitations. 

 

Qualitatively, the results describing the band gaps with tetrahedral sites are consistent for the 

"neutral" antiferromagnetic states. However, SA-CASSCF and ICE-CI do not accurately capture the 

behaviour of the "ionic" antiferromagnetic states, leading to an inaccurate representation of the band 

gaps in these models. For quantitative agreement with experimental results, methods that account for 

dynamic correlation are significantly more accurate than SA-CASSCF and ICE-CI. Among these 

methods, MR-EOM-CC provides the best agreement with experimental results in predicting the band 

gaps of systems with tetrahedral sites. This is due to its ability to accurately describe the excited states 

of the system by taking into account electron correlation, resulting in reliable predictions. 

In the previous discussion of the MR-EOM-CC results, it was discovered that the first band gap 

observed experimentally at about 0.78 eV originates from the tetrahedral Co sites, particularly the one 

formally charged Co(III) in the "ionic" antiferromagnetic state. Although there are other excitations in 

this energy range, this specific excitation will be discussed for simplicity. MR-EOM-CC predicts a band 

gap of 0.76 eV. Excluding the ICE-CI and SA-CASSCF methods, which predict a band gap of about 

0.31 eV, the multireference methods range from 0.71 eV for SA-CASSCF/NEVPT2 to 0.89 eV for SA-
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CASSCF/DCD-CAS(2), with SA-CASSCF/CASPT2 providing the best result of 0.77 eV. It is important 

to note that two absorption bands are predicted in the vicinity of this band gap in the experiment. 

Therefore, the other competing excitations of differently charged tetrahedral Co centers may also 

contribute to the other absorption band. 

MR-EOM-CC explained the experimental band gap at 1.51 eV by the presence of formally 

Co(I) and Co(III) tetrahedral sites in the "ionic" antiferromagnetic model, resulting in a calculated band 

gap of 1.51 eV from both sites. As already described and visualized in Figure 10, the two corresponding 

ligand field excitations have different energies when NEVPT2 is applied. This is also the case for all 

other methods tested. SA-CASSCF and ICE-CI again give ambiguous results due to the lack of dynamic 

correlation. According to the SA-CASSCF/NEVPT2 and SA-CASSCF/CASPT2 methods, the excited 

state of Co(III) is predicted to be at 1.31 eV and 1.32 eV, respectively, and the corresponding excited 

state of Co(I) is predicted to be at 1.65 eV. However, the DCD-CAS(2) method overestimates the band 

gap, placing the state originating from Co(III) state at 1.60 eV and the one from Co(I) at 1.73 eV. 

The experimental band gap of 2.14 eV was in excellent agreement with the ligand field 

transition of high spin tetrahedral Co(II) calculated by MR-EOM-CC. The other multireference methods 

- again excluding SA-CASSCF and ICE-CI - vary from 2.12 eV for SA-CASSF/CASPT2 to 2.40 eV 

for SA-CASSCF/NEVPT2, with SA-CASSCF/DCD-CAS(2) placing the corresponding state at 2.22 

eV. 

As described above, the second triplet and first singlet ligand field excited states of the 

octahedral Co(III) sites represented by Co2ZnO4 calculated with EOM-CC show reasonable agreement 

with the band gaps at 1.51 eV and 2.14 eV, respectively. Switching to MR-EOM-CC improves the 

agreement, with calculated values of 1.49 eV and 2.12 eV. The results shown in Figure S14 support 

these findings, as SA-CASSCF/NEVPT2 (1.75 eV/2.24 eV) and SA-CASSCF/CASPT2 (1.62 eV/2.22 

eV) slightly overestimate the two band gaps, while SA-CASSCF/CASPT2 (1.49 eV/1.97 eV) and ICE-

CI (1.42 eV/2.06 eV) slightly underestimate them. This suggests that although the ligand field transition 

states of the octahedral site are formally considered dipole-forbidden "dark states" and, thus, have zero 

or near-zero oscillator strength, they may still contribute to the two band gaps in conjunction with the 

ligand field transitions of the tetrahedral sites. This could happen either by gaining intensity themselves 

or by enhancing the intensity of the tetrahedral ligand field excitations. 

The idea of a superposition of the octahedral and tetrahedral ligand field excitations has already 

been entertained in the TD-DFT discussion and is also based on Lima et al.38 The contribution of the 

octahedral ligand field excitations may also explain the experimental evidence for Co(III) sites, such as 

in the higher absorption peak associated with the second band gap. Kim et al.46 showed that this feature 

in Co3O4 shifted from 2.40 eV to 2.80 eV for Co2ZnO4. In all tested computational methods, the second 

band of singlet states in Co2ZnO4 gains more oscillator strength. These states appear at 2.96 eV in the 

MR-EOM CC calculations and may explain this observation. 



 30 

Notably, the first bands of the triplet states of the octahedral ligand field excitations are close to 

the first band gap of 0.78 eV. Although overestimation occurs in all methods, including dynamic 

correlation, except SA-CASSCF/CASPT2, which agrees well with the band gap, this finding suggests 

that the octahedral sites may also play a role in this case or, more likely, contribute to the higher 

absorption band found experimentally in this energy range (peak at about 0.94 eV).  

While the multireference description may provide an overall more satisfactory description of 

the cobalt oxides that is in better agreement with the experiments than TD-DFT, the drawback is that 

certain states, such as the MMCT states, are not included in the final model due to computational 

limitations. In addition, the approach is restricted to smaller cluster sizes. Thus, the combination of the 

two approaches provides not only competing but also concordant explanations, leading to a more 

rounded overall explanation. In general, the two protocols provide a valuable complementary approach. 

 

5 Derivation of the Hubbard Correlation Hamiltonian in BO Framework   
 

We start from the 2-electron Hamiltonian in the Born-Oppenheimer approximation 

 

𝐻23 = ∑ ℎ45𝐸*45 + 1/2  ∑ (𝑝𝑞|𝑟𝑠)4,5,7,8 𝐸*45𝐸*784,5 − δ57𝐸*48) 

 

in which, p,q,r,s are general orbital indices,  𝐸*45 is the excitation operator defined as 

𝐸*45 = 9 α:49
: α:59

9∈{=,>}

 

with spin σ ∈ {α, β}, and creation α:49
:  and α:59 the creation and annihilation operators which create and 

annihilate an electron in orbitals p and q with spin σ respectively. ℎ45 are the 1-electron orbital energies 

and  (𝑝𝑞|𝑟𝑠) are 2-electron integrals. Hence using anticommutation relations and normal order of 

operators   𝐻23 is given by: 

 

𝐻23 =9ℎ45 ∑ =A"#
$ =A%##

+ 1/2 9 9(𝑝𝑞|𝑟𝑠)
9,9B4,5,7,8

α:49
: α:79B

: α:59α:89B
4,5

 

 

 

Considering that Coulomb 𝐽45 and Exchange 𝐾45 2-electron integrals are given by 

 

𝐽45 = (𝑝𝑝|𝑞𝑞) =CDφ4 (rC)D
D 1
rCD

Dφ5 (rD)D
D
, d𝑟Cd𝑟D 

𝐾45 = (𝑝𝑞|𝑞𝑝) = Cφ4∗ (rC)φ5∗ (rD)
1
rCD

φF (rC)ψG (rD) , d𝑟Cd𝑟D 
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Hence by retaining only, the dominant contributions arising by on-site A-A or B-B and inter-site A-B 

interactions we can derive the needed terms for the Hubbard Hamiltonian. Hence for the 1-electron 

terms one has: 

 

1) On-site terms. The 1-electron term for (p = q) reads: 

 

9ℎ44∑ =A"#
$ =A"##

4

= 𝑛4ℎ44 ≡ ℎ45
HII 

where ℎ44 represent the crystal field energies, (e.g. 𝐸HJKLL ,  𝐸MDJKLL ,  𝐸HNJKLLL ,  𝐸MDNJKLLL or 𝐸3  when an O Ligand 

is considered) and 𝑛4is the electron occupancy. While the 2-electron Coulomb repulsion term, (p = q, 

r = s): 

9(𝑝𝑝|𝑝𝑝)9
9,9B

α:49
: α:49B

: α:49α:49B
4

=9𝐽44 M9
9

α:49
: α:49

: NM9
9O9B

α:49B
: α:49B

: N
4

≡ 𝐽44
HII 

 

2) Nearest-Neighbour terms. This involves the hopping 1-electron term  

 

9Oℎ45 ∑ P=A"#
$ Q=A"#R=A%#

$ =A"## P
4,5

≡ −𝑡45 

where ℎ45 = −𝑡45  represent the hopping integral (e,g, 𝑡SS,   𝑡S2, or 𝑡S3,   𝑡S3, when an O Ligand is 

considered) 

 

 

As well as the respective two electron Coulomb repulsion and Exchange terms: 

 

Coulomb repulsion term, (p = q,  r  =  s, p ≠ 𝑟): 

9(𝑝𝑝|𝑞𝑞)9
9,9B

α:49
: α:49B

: α:59α:59B
4O5

= 9 𝐽45 M9
9

α:49
: α:49

: NM9
9O9B

α:59B
: α:49B

: N
4O5

≡ 𝐽45
HII 

Exchange term, (p = r,  q  =  s): 

−9(𝑝𝑞|𝑞𝑝)9
9,9B

α:49
: α:59B

: α:49Bα:59
4,5

= −9𝐾45 ∑ T(=A}"#
$ =A%#&

$ =A"#&=A%#RV.X.Y≡[\"%
'((

#
4,5

 

where σU = β if σ = α  

 

Hence the Hubbard Hamiltonian in the BO framework reads 

𝐻]^__`7a23 = ℎ44
HII   + 𝐽44

HII
XYYYZYYY[

3b[cdMH

−𝑡45 +  𝐽45
HII − 𝐾45

HII
XYYYYYZYYYYY[

LbMH7[cdMH
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It follows that by setting ℎ44 = 0, and 𝐽44 = U, and omitting the Inter-Site Coulmb and Exchange terms 

one arrives to the original Hubbard Hamiltonian model. 

𝐻]^__`7a
37dNdb`e = 𝑈HII_

3b[cdMH
+ −𝑡45_

LbMH7[cdMH

 

 

 

There are in principle 5 predominant site interaction terms namely: 1) the on-site crystal field 

energies  ℎ44 (e.g. εH
JK(LL),  εMD

JK(LL),  εHN
JK(LLL),  εMDN

JK(LLL) or ε43 when an O Ligand is considered. 2) the on-site 

Coulomb repulsion 𝐽44 3) the inter-site hopping integral 𝑡45 (e.g. 𝑡SS,   𝑡S2, or 𝑡S3,  when an O Ligand is 

considered), 4) the inter-site Coulomb repulsion 𝐽45 and 5) the inter-site exchange term 𝐾45. 

 

5.1 Numerical Model Example 
 

Let us now employ the above interaction Hamiltonian in a simple numerical example. We define 

a model system starting from the ‘neutral’ antiferromagnetic ground state configuration state function 

CSF |Ψg⟩ ≡ |AG: ehtDi, B: tDjk , AF: eht̅Dii, we consider in addition the d-d excited state |Ψlm⟩:  

|AG: eitDh, B: tDjk , AF: eht̅Dii, the LMCT ionic state |Ψnopq⟩:  |O: pr, AG: ehtDh, B: tDjk , AF: eht̅Dii, the A-A 

MMCT ionic state DΨoopqs[s i:  |AG: ehtDD, B: tDjk , AF: eht̅Dhi, the A-B MM’CT ionic state DΨooBpqs[t i:  

|AG: ehtDD, B: tDjk ejC, AF: eht̅Dii, and the B-A M’MCT ionic state DΨoBopqt[s i:  |AG: ehtDi, B: tDjr , AF: ehtDCt̅Dii, 

where bar indicate spin-down electron occupancies and p and q are general orbital indices. These states 

can mix on the basis of the Hubbard Hamiltonian. 

 We recall that a two-state system with a neutral and ionic state that are allowed to mix. Their 

Energy difference is ∆𝐸 = 𝐸g − 𝐸L and the mixing Hamiltonian matrix is: H = m
𝐸g 𝑉
𝑉 𝐸L

o,  where V =

⟨ΨN|𝐻|ΨI. It follows that the resulted mixed states are: DΨ±i = 𝑐g
±|Ψg⟩ + 𝑐L

±|ΨL,  

with energies 𝐸± =
v)Rv*
D

±tuwv
D
P
D
+ 𝑉D, with 𝑐g,L the respective mixing coefficients: 

𝑐g
± = C

xCRP
+),+±

. Y
/,  𝑐L

± = v)[v±
y

𝑐g
±. In this concept we can distinguish the following interaction cases: 

 
5.1.1 d-d transitions at A (or B) sites 

 

Considering first A sites, regular ligand field (LF) d-d transitions on A sites will give rise on a 

set of excited states state |Ψvc⟩:  |𝐴4: eitDh, B: tDjk , 𝐴5: eht̅Dii. This is an intra-site process, not involving 

direct electron transfer between sites 𝐴4 and 𝐴5. Hence the energies of the d-d excited states in this 

model are given by Δ𝐸vc[g
± = wz0'0123'4125

D
± tuwz0'0123'4125

D
P
D
+ x𝑡4S5S + 𝐾4S5Sy

D.  
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Both 𝑡4S5S < 10[D and 𝐾4S5S < 10[r are very small, owning to the fact that 1) the ground 

state antiferromagnetic coupling is very small, and 2) the two sites are not nearest neighbours, they are 

separated by Co(III) B-sites, rendering the inter-site d-overlap, and consequently 𝑡S4S5 very small. This 

also indicate minimum mixing between the ground and excited states. As a result the excitation energy 

is given by Δ𝐸vc[g~ΔεMHM7`VHa7`e~0.81 eV which for the Co(II) A centres amount to about 1eV. This 

is consistent with the lowest energy BG. As expected, the impact of the electron correlation is negligible, 

hence is not surprising that this energy gap is well reproduced already at the CASSCF level calculations.  

In a similar fashion it can be shown that at B-sites Δ𝐸vc[g~ΔεKXM`VHa7`e, which fall out of the energy 

range of the observed BGs while they result in negligible intensities. 

 

5.1.2 LMCT transitions at A sites 
 

In the case of LMCT transitions we consider: 

• the neutral ground state |Ψg⟩:  |𝑂: 𝑝k, 𝐴4: ehtDi, B: tDjk , 𝐴5: eht̅Dii 

• the d-d excited state |Ψvc⟩:  |𝑂: 𝑝k, 𝐴4: eitDh, B: tDjk , 𝐴5: eht̅Dii 

• the LMCT ionic state |Ψ{|J}⟩:  |𝑂: 𝑝r, 𝐴4: ehtDh, B: tDjk , 𝐴5: eht̅Dii 

 
 

In the first approximation we consider only the interaction between the ground state |Ψg and the 

LMCT one |Ψ{|J}. Hence the interaction Hamiltonian reads: 

 

H = m
0 𝑉{|J}

𝑉{|J} 𝐸{|J}
o = m

0 𝑡4Se3 + 𝐾4Se3
𝑡4Se3 + 𝐾4Se3 𝐽4343 + 𝐽4Se3 + (𝜀iaS − 𝜀D43)

o 

Where: 
• 𝑉{|J} = 𝑡4Se3 + 𝐾4Se3 
• 𝐸{|J} = 𝐽4343 + 𝐽4Se3 + (𝜀aS − 𝜀43) 

Hence the energy gap referring to the LMCT transitions is  Δ𝐸{|J} = 2tuv6789
D
P
D
+ 𝑉{|J}D  

Considering in addition the d-d excited state the interaction Hamiltonian reads 
 

𝐻 = M
0 0 𝑉g[{|J}
0 ∆𝜀MHM7`VHa7`e 𝑉{|J}

𝑉g[{|J} 𝑉{|J} 𝐸{|J}
N

= �
0 0 𝑡4Se3
0 ∆𝜀MHM7`VHa7`e 𝑡4Se3 + 𝐾4Se3

𝑡4Se3 𝑡4Se3 + 𝐾4Se3 𝐽4343 + 𝐽4Se3 + (𝜀iaS − 𝜀D43)
� 

We can now make use   

1) of the bare CASSCF 1- and 2-electron integrals  

2) the factor of ~4 fold NEVPT2 versus CASSCF energy stabilization of the LMCT states (as described 

at section VII of the main text) and perform a numerical substitution of the above interaction 

Hamiltonian.  
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Solving the resulting eigenvalue problem gives numerical estimates for  𝐸vc and  𝐸{|J}, 

summarized in Table S5. The numerical example shows that the ES and LMCT states mix by about 10% 

and 20% before and after applying the NEVPT2 energy stabilization to the bare CASSCF 2-electron 

integrals with the stabilization reflected to the  𝐸vc energies from the ∆𝜀MHM7`VHa7`e 	 value. In both cases 

the 	

𝐸{|J} falls into the 2.5-4.5 eV range, consistent with the CASSCF and NEVPT results presented in 

section VII.  

 
Table S5. Numerical evaluation employing a Hubbard like model Hamiltonian to a set of chosen ES 

and LMCT CSFs to represent the predominant d-d, and LMCT transitions. 

Terms (eV) Using bare CASSCF  

1- and 2-electron integrals 

Prescreening the Coulomb integrals from 

the NEVPT2 energy stabilization 

∆𝜀MHM7`VHa7`e 0.81 0.81 

𝜀aS − 𝜀43 1.81 1.81 

𝑡4Se3 -1.25 -1.25 

𝐽4343 4.80 1.20 

𝐽4Se3 3.53 0.88 

𝐾4Se3 0.14 0.14 

𝐸vc 0.77 0.71 

𝐸{|J} 4.44 2.69 

 

5.1.3 MMCT transitions at A and B sites 
 
In the case of MMCT transitions we consider  
 

• the neutral ground state |Ψg⟩:  |: ehtDi, B: tDjk , 𝐴5: eht̅Dii 

• the d-d excited state |Ψvc⟩:  |𝐴4: eitDh, B: tDjk , 𝐴5: eht̅Dii 

• the A-A’ MMCT ionic state DΨ||J}S[SB i:  |𝐴4: ehtDD, B: tDjk , 𝐴5: eht̅Dhi 

• the A-B MM’CT ionic state DΨ||BJ}S[2 i:  |𝐴4: ehtDD, B: tDjk ejC, 𝐴5: eht̅Dii 

• the B-A M’MCT ionic state DΨ|B|J}2[SB i:  |𝐴4: ehtDi, B: tDjr , 𝐴5: ehtDCt̅Dii 

 

 
Hence by taking into account the interaction between the ground state |Ψg⟩ and the A-A’ MMCT 

DΨ||J}S[S i A-B MMCT DΨ||BJ}S[2 i and B-A M’MCT DΨ|B|J}2[S i as well as he interaction with the d-d 

excited state |Ψvc⟩:  |𝐴4: eitDh, B: tDjk , 𝐴5: eht̅Dii The interaction Hamiltonian reads: 
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H =

⎝

⎜⎜
⎛

0 0 Vs[sB Vs[t Vt[sB
0 ∆ε~�~�������� Vlm[s[sB Vlm[s[t Vlm[t[sB

Vs[sB Vlm[s[s Eoopqs[sB Vs[sB[s[t Vs[sB[t[sB
Vs[t Vlm[s[t Vs[t[s[sB EooBpqs[t Vs[t[t[sB
Vt[sB Vlm[t[sB Vt[sB[s[sB Vt[sB[s[t EoBopqt[sB ⎠

⎟⎟
⎞

 

Where 

• Eoopqs[sB = ∆εss + (7JGsBFsB − 6JGsFsXYYYYZYYYY[
3b[cdMH	JK^eK�_

) + (JGsFsB + 6JGtFsB − 6JGsFtBXYYYYYYYYZYYYYYYYY[
LbMH7[cdMH	JK^eK�

) 

• Eoo:pq
s[t = ∆εst + (−6JGsBFsB + 6JGtFtXYYYYYZYYYYY[

3b[cdMH	JK^eK�_

) + (−7JGsFsB + 7JGtFsBXYYYYYZYYYYY[
LbMH7[cdMH	JK^eK�

) 

• EoBopqt[s = ∆εst + (−5JGtFt + 7JGsBFsBXYYYYYZYYYYY[
3b[cdMH	JK^eK�_

) + (−7JGsFt + 7JGsFsB − 2JGtFsBXYYYYYYYYZYYYYYYYY[
LbMH7[cdMH	JK^eK�

) 

• Vs[sB = tGsFsB, Vs[t = tGsFt, Vt[sB = tGtFsB 
• Vlm[s[s = tGsFsB + KGsFsB, Vlm[s[t = tGsFt + KGsFt, Vlm[t[sB = tGtFsB + KGtFsB 
• Vs[sB[s[t = 	tGsFt, Vs[sB[t[sB = 	tGtFsB, Vs[t[t[sB = KGsFt + KGtFsB 

 

Like in the LMCT case described in section 5.1.2 we can now   

1) Utilize the bare CASSCF 1- and 2-electron integrals.   

2) Incorporate the ~9-fold factor of NEVPT2 versus CASSCF energy stabilization of the MMCT states 

(see Section VII of the main text) and perform a numerical substitution of the resulting interaction 

Hamiltonian. Solving the corresponding eigenvalue problem yields a numerical estimation of the 

transition energies: 𝐸vc, 𝐸||J}S[S  and  𝐸||BJ}S[2 /𝐸|B|J}2[S . 

 

The results are summarized in Table S6.  
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Table S6. Numerical evaluation employing a Hubbard like model Hamiltonian to a set of chosen ES 

and LMCT CSFs to represent the predominant d-d, and LMCT transitions. 

Terms (eV) Using bare CASSCF  

1- and 2-electron integrals 

Prescreening the 2-elctron integrals from 

the NEVPT2 energy stabilization 

∆𝜀MHM7`VHa7`e 0.81 0.81 

∆𝜀SSB 0.01 0.01 

∆𝜀S2 1.36 1.36 

∆𝜀2S 1.36 1.36 

𝐽4S5S 23.7 2.63 

𝐽4SB5SB 23.7 2.63 

𝐽4252 15.3 1.70 

𝑡4S5SB 1.25 1.25 

𝑡4S52 <5x10-3 <5x10-3 

𝑡425SB <5x10-3 <5x10-3 

𝐽4S5SB 3.80 0.42 

𝐽4S52 4.08 0.45 

𝐽425SB 4.08 0.45 

𝐾4S5SB 0.90 0.90 

𝐾4S52 <10-4 <10-4 

𝐾425SB <10-4 <10-4 

𝐸vc 0.77 0.81 

𝐸||J}S[SB  23.71 2.64 

𝐸||BJ}S[2  16.66 3.06 

𝐸|B|J}2[SB  22.35 1.28 

 

 

The numerical example above demonstrates that when the Coulomb integrals are scaled by a factor 

of ~9 according to the NEVPT2 versus CASSCF energy stabilization, all MMCT energies fall within 

the 1.5-2.5 eV range, aligning with the middle energy experimental BG. Similar to the LMCT numerical 

example, a ~20% mixing with the LF transitions at site A is crucial for achieving good agreement with 

the experimental data. 

6 Supplementary material for ground state magnetic structure of Co3O4 
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Before proceeding to the excited state calculations, the magnetic structure of Co3O4 in the 

ground state is discussed. It has been shown experimentally that in the ground state of Co3O4 the Co(II) 

sites are weakly antiferromagnetically coupled with J = -2 to -5 cm-1. 

 
6.1 Principles of two center ground state magnetic coupling  

 

The magnetic properties of a system comprised of two interacting magnetic centers with 

fictitious local spins SA and SB are typically interpreted in the context of the phenomenological 

Heisenberg–Dirac–van Vleck spin-Hamiltonian: 

                              H����� = −2𝐽S2𝑆�S𝑆�2      (1)        

     

where the 𝐽S2is the coupling constant or the exchange integral between nuclei centers A and B, while 

𝑆�S and 𝑆�2 are the corresponding spin operators. In practice, the effective exchange coupling constant J 

in Eq. 1 serves as a measure of the strength of the interaction and is positive for a ferromagnetic and 

negative for an antiferromagnetic spin alignment.  

As shown previously50-53 in the description of antiferromagnetic coupling, apart from the 

‘neutral’ states in which the groups of antiparallel coupled electrons are localized in the involved 

magnetic centers, one has to consider all relevant ‘ionic’ states in which only a fraction of the antiparallel 

coupled electrons are localized in the involved magnetic centers. In the conventional description, these 

‘ionic’ states can be reached from the ‘neutral’ states by metal to metal or metal to ligand charge transfer 

(MMCT or MLCT). The net result is a more complete description of the electron correlation phenomena 

in these systems, which further stabilizes the dominant ‘neutral’ antiferromagnetic states. 

The well-studied problem51, 53 of two centers A and B, each carrying an unpaired electron and 

occupying the two singly occupied canonical orbitals and . (e.g., the case of the Cu(II) dimer) can 

demonstrate the ‘ionic’ and ‘neutral’ antiferromagnetic states. The two centers can couple to one triplet 

and three singlet states, which can be represented by a set of four configuration state functions (CSFs), 

e.g. constructed by the genealogical coupling scheme, to form two 'neutral' D Φi i = |+ +⟩, D ΦC i = |±⟩ 

and two 'ionic' D ΦC i = |2 0⟩, D ΦC i = |0 2⟩ CSFs. By localizing the t and u singly occupied orbitals, 

one can form the corresponding magnetic orbitals a = C
√D
(t + u) and b = C

√D
(t − u), which are local to 

the respective centers A and B. In this context, the singlet-triplet energy difference can be evaluated as 

the expectation value of the BO Hamiltonian for these CSFs, which before CI amounts to 

E(𝑆 = 0) − E(S = 1) = 2𝐾`_ ≡ 𝐽S2    (2) 

where 𝐾`_ = ∫ψ`(𝑟C)ψ_(𝑟D)
C
7;/
ψ`(𝑟D)ψ_(𝑟C)𝑑𝑟C𝑑𝑟D is the inter-site exchange integral between the 

magnetic orbitals a and b of the respective centers. Configuration interaction can further mix the 

‘neutral’ and ‘ionic’ states so that expression (2) becomes:  

                                             E(𝑆 = 0) − E(𝑆 = 1) = 2𝐾`_ −
h�2<

/

�22[�2<
≡ 𝐽S2   (3) 



 38 

where 𝐽 ` = ∫ψ`(𝑟C)ψ_(𝑟D)
C
7;/
ψ`(𝑟D)ψ_(𝑟C)𝑑𝑟C𝑑𝑟D is the intra-site exchange integral, 𝐽 _ =

∫ψ`(𝑟C)ψ_(𝑟D)
C
7;/
ψ`(𝑟D)ψ_(𝑟C)𝑑𝑟C𝑑𝑟D is the inter-site coulomb integral, and 𝐹 _ is the inter-site Fock 

like integral (section 5.5). It becomes evident that for systems consisting of centers with a higher number 

of spins, the effective exchange coupling constant J is associated with the pairwise spin interactions 

across the components of the entire spin ladder. 54, 55 For the case of Co3O4 this will be elaborated in the 

following section. 

 

6.2 Origin of magnetic coupling in Co3O4   
In a first approximation, the analysis is restricted to a model cluster of the Co3O4 crystal structure 

consisting of two Co(II) and one Co(III) center. Starting with only the two Co(II) centers in mind, the 

problem can be set up as two S = i
D
 systems interacting to give a spin ladder S = 0,1,2,3. One can 

construct the CSFs representing the neutral configurations for each of the spin states. Following the 

genealogical coupling scheme, for a given spin multiplicity more than one CSF can be constructed, 

giving one, five, nine, and five CSFs for the septet, quintet, triplet, and singlet states, respectively, as 

shown: 

| ΦL� g⟩, D ΦLr gi, D ΦLi gi, D ΦLC g⟩ 

Evaluating the expectation value of the BO Hamiltonian for the neutral CSFs (see Section 5.5), the 

energy differences between the spin states are: 

E(𝑆 = 3) − E(𝑆 = 2) = − C
D
𝐾UM^

r 𝐴M^          (4) 

E(𝑆 = 2) − E(𝑆 = 1) = C
D
𝐾UM^x 𝐴r M^ − 𝐴i M^y        (5) 

E(𝑆 = 1) − E(𝑆 = 0) = C
D
𝐾UM^x 𝐴i M^ − 𝐴C M^y        (6) 

where {L𝐽DcRC𝐴45 = � ΦLDcRC
gD𝐸5

4𝐸4
5D Φ�DcRC

g and 𝐾UM^ =
C
D
∑ ∑ 𝐾M^c3|38

^OM
c3|38
M . 

 As shown in Table S5 comparison with the energy separation obtained by modelling this system 

with the HDvV Hamiltonian provides the magnitude of J~𝐽� as a function of exchange integrals 𝐾UM^ and 

coupling coefficients 𝐴DcRC
45. 

 

 

 

 

 

 

 

Table S5. Comparison of the energy differences between the components of the spin ladder in Co3O4 

on the basis of the model HDvV Hamiltonian and the expectation values of the BO Hamiltonian. 
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 DE(S-(S-1)) (HHDvV) DE(S-(S-1)) (HBO) 

S=3 -6 J −
1
2𝐾
'!"

# 𝐴!" 

S=2 -4 J 1
2𝐾
'!") 𝐴# !" − 𝐴$ !"* 

S=1 -2 J 1
2𝐾
'!") 𝐴$ !" − 𝐴% !"* 

S=0 0 0 

 

This simple model can be further improved by considering the mixing between the neutral CSFs 

of same spin multiplicity, but different spin couplings. Inclusion of this mixing gives an additional 

contribution to J,   𝐽C: 

𝐽C =
;
/\�0= S0=*>

/?@;

∆vP �)*
/?@; [ �)>

/?@; Y
          (7) 

 

 

 
 

Figure S16. Schematic representation of the possible coupling MMCT pathways between ‘neutral’ and 

‘ionic’ states.  

Focusing on Co3O4 and in particular on the simplified model 2t1o, which contains two 

tetrahedrally coordinated M = Co�� centers antiferromagnetically coupled and bridged by an 

octahedrally coordinated LS MB = Co��� center, there are in principle three MMCT-type transitions from 

the ‘neutral’ antiferromagnetic ground state to ‘ionic’ states, as shown in Figure S15. 1) via direct 

MMCT transitions Co�� ∙∙∙ Co��� ∙∙∙ Co�� → Co��� ∙∙∙ Co��� ∙∙∙ Co� between the formal CoII centers and 2) via 

indirect MMBCT/MBMCT sequencies of transitions between the CoII centers and CoIII centers 

resepctively:  

CoIII CoI
CoIII

CoII CoII
CoIII

CoIII CoII
CoII

!!′
#$

MMCT

!′!#$

CoII CoI
CoIV

! !!#$ !!
! #$

MMCT
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MMBCT/MBMCT: Co�� ∙∙∙ Co��� ∙∙∙ Co�� → Co��� ∙∙∙ Co�� ∙∙∙ Co�� → Co��� ∙∙∙ Co��� ∙∙∙ Co� 

MBMCT/MMBCT: Co�� ∙∙∙ Co��� ∙∙∙ Co�� → Co�� ∙∙∙ Co�� ∙∙∙ Co� → Co��� ∙∙∙ Co��� ∙∙∙ Co� 

 

Inclusion of these CSFs result in the following additional contributions to J: 

𝐽D =
M0=

∆v� �ABC
/?@; [ �)

/?@; �
          (8) 

 
𝐽i =

M02
∆v� �77:89

/?@; [ �)
/?@; �

         (9) 

 
𝐽h =

MA0
∆v� �7:789

/?@; [ �)
/?@; �

         (10) 

 
where 𝑡45 = �ΦLD𝐻�DΦ� is the hopping integral, while i, a and t, u represent doubly occupied, virtual and 

singly occupied orbitals respectively.  Collectively the J ≡ 𝐽MKM`e can be provided by the following 

expression: 

J ≡ 𝐽MKM`e = 𝐽� + 𝐽C + 𝐽D + 𝐽i + 𝐽h        (11) 

 
6.3 Numerical evaluation of 𝑱 on the basis of Broken Symmetry DFT  
 

As a first approximation, one can resort to the broken symmetry (BS)DFT approach.53, 56-66  In 

this concept, in contrast to the above description, the antiferromagnetic state is reflected in a single 

unrestricted determinant, where the singly occupied opposite-spin 'magnetic orbitals' are allowed to take 

spatial parts that are more or less localized at the magnetic centers. The (BS)DFT calculated charge 

density is usually within acceptable limits, although the spin density obtained from the determinant is 

qualitatively incorrect.53, 56, 57  

In principle, there are several spin projection approaches to map the DFT-BS energies onto 

those of the Heisenberg Hamiltonian states53, which are categorized according to their ability to 

reproduce the J coupling constant in the wide range between weak and strong interactions61, 65, 67-69. 

Among them, the Yamaguchi formula67, 68 is somewhat preferred, since it is valid for both regimes of 

weak and strong coupling interactions. Since the preference of the equations under discussion is still 

debated in the literature, the performance of different approaches is evaluated below for their ability to 

calculate the weak antiferromagnetic coupling between the two Co(II) centers in Co3O4. 

In the case of Co3O4 the results are summarized in Table S6. All tested functionals ranging 

between non-hybrid (BP86, PBE, BLYP), hybrid (B3LYP, PBE0) and double-hybrid (wPBEPP86, 

SCS-wPBEPP86 and DSD-BLYP) predict the correct sign of J in three commonly employed 

approximations (Noodleman61, Gatteschi65, 69 and Yamaguchi67, 68). However, unless hybrid functionals 

are employed all other functionals outperform. 

 

Table S6. BS-DFT computed J values in a variety of functionals and approximations. 
J /Functional BP86 PBE BLYP PBE0 B3LYP wPBEPP86 SCS-wPBEPP86 DSD-BLYP 



 41 

J Noodleman -9.52 cm
-1

 -9.94 cm
-1

 -11.12 cm
-1

 -4.90 cm
-1

 -5.18 cm
-1

 -1.53 cm
-1

 -1.53 cm
-1

 -1.54 cm
-1

 

J Gatteschi -7.14 cm
-1

 -7.46 cm
-1

 -8.34 cm
-1

 -3.76 cm
-1

 -3.88 cm
-1

 -1.15 cm
-1

 -1.15 cm
-1

 -1.15 cm
-1

 

J Yamaguchi - 9.51 cm
-1

 -9.94 cm
-1

 -11.11 cm
-1

 -4.89 cm
-1

 -5.18 cm
-1

 -1.53 cm
-1

 -1.53 cm
-1

 -1.54 cm
-1

 

 

6.4 Numerical evaluation of 𝑱 on the basis of Approximate CI   
Further insight into the exact mechanism of the antiferromagnetic coupling in Co3O4 is sought 

in the CAS-ICE and CAS-ICE/NEVPT2 level theories, which can naturally treat all necessary 'neutral' 

and 'ionic' antiferromagnetic states required for the evaluation of the coupling constant by Eq. 4 -11. 

In this concept evaluating the Dirac–van Vleck spin-Hamiltonian (1) requires the determination 

of the energies of the entire spin-ladder (S = 0, 1, 2, 3) components.54, 55 The results are summarized in 

Table S7. The first step is to focus on an active space that includes only the two Co(II) centers 

(CAS(14,10)). This provides access to all ‘neutral’ and ‘ionic’ MMCT states within the Co(II) centers 

in the 2t1o cluster. While the order of the spin ladder energies is correctly predicted, leading to the 

correct sign of J, their magnitude is strongly underestimated, leading to unphysically small J values 

compared to experiment. The situation changes rapidly when the active space is extended to include all 

relevant MMCT and MLCT transitions involving the Co(III) centers CAS(20,15). As shown in Table 

S7, especially at the CAS-ICE/NEVPT2 level the calculated J value (J = -4.98) is in very good 

agreement with the experiment. 

 

Table S7. CAS-ICE and CAS-ICE /NEVPT2 computed spin-ladder energies and J values 

employing Dirac–van Vleck spin-Hamiltonian (1).  

Spin Ladder/J Model CAS-ICE CAS-ICE /NEVPT2 
CAS(14,10) 

S = 0 0 0 0 
S = 1 -2 J 0.9 cm

-1
 2.4 cm

-1
 

S = 2 -6 J 2.7 cm
-1

 3.9 cm
-1

 
S = 3 -12 J 5.5 cm

-1
 8.7 cm

-1
 

J -5.05 cm
-1

 -0.66 cm
-1

 -1.07 cm
-1

 
CAS(20,15) 

S = 0 0 0 0 
S = 1 -2 J 6.8 cm

-1
 10.2 cm

-1
 

S = 2 -6 J 20.2 cm
-1

 30.1 cm
-1

 
S = 3 -12 J 41.1 cm

-1
 61.2 cm

-1
 

J -5.05 cm
-1

 -3.35 cm
-1

 -4.98 cm
-1

 
 

In conclusion, it has been shown that an excellent description of the antiferromagnetic ground 

state of Co3O4 can be achieved once all relevant 'neutral' and 'ionic' antiferromagnetic states are properly 

taken into account. The extent to which this might influence the excited state energies that probe the 

optical band gap in Co3O4 is discussed in the main text. 
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7 Input file examples 
 
7.1 Broken-Symmetry TD-DFT input file 

 

7.2 EOM-CC with HFLayer input file 
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7.3 SA-CASSCF with NEVPT2 input file 

 

7.4 MR-EOM-CC input file 
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