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S1 Conditions for the JT and PJT Interactions

While exploring the conditions to understand the properties related to the distortions of TiO8−
6 unit

of BaTiO3 crystal, it appears that the vibrational modes (t2g and t1u) are responsible for Jahn-Teller

(JT) and pseudo Jahn-Teller (PJT) interactions. On the other hand, the Ti4+ ion of TiO8−
6 unit

having a d0 electronic configuration leads to a non-degenerate ground state (A1g), whereas the first

excited state is triply degenerate (T1u). The JT and PJT effects originate due to the coupling of

electronic state with vibrational modes of appropriate symmetry. In other words, the direct product

of irreducible representations for the electronic state and the vibrational mode contains the totally

symmetric representation (A1g). The JT distortion takes place between 1T1u states via t2g normal

modes:

A1g ∈ t2g ⊗ [(T1u)
2] ≡ g ⊗ u⊗ u,

whereas the PJT effect involves the coupling between the non-degenerate ground state (A1g) and

an excited state (T1u) via vibrational modes (t1u):

A1g ∈ t1u ⊗ [A1g ⊗ T1u] ≡ u⊗ g ⊗ u.

Though our calculations reveal that the JT distortion due to interaction of t2g normal modes with

T1u electronic states is negligibly small, the PJT stabilization for the coupling of t1u modes with A1g

and 1T1u electronic states is significant. Moreover, ab initio calculation along other u-symmetric

normal modes (t2u and other set of t1u) yield approximately the same stabilization energy (-0.65

eV) and thereby, one representative set of u-symmetric normal modes is chosen for the present

calculation. This selection simplifies the calculation as predicted before1 to depict the effect of PJT

stabilization on photoemission spectra and ferroelectric properties.

S2 Adiabatic to Diabatic Transformation Equation: Curl Condition

In adiabatic Representation, the kinetically coupled SE can be written as:

− h̄
2

2

(
~∇R + ~τ

)2
ψad + (U − E)ψad = 0. (S1)
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Using the following transformation:

ψad = Aψd, (S2)

with ψad and ψd as adiabatic and diabatic nuclear wavefunctions, respectively and ‘A’ being the

adiabatic-to-diabatic transformation matrix, Eq. S1 turns into:

− h̄
2

2

(
~∇R + ~τ

)2
Aψd + (U − E)Aψd = 0, (S3)

which appears as:

− h̄
2

2

[
A∇2

Rψ
d + 2(~∇RA+ ~τA) · ~∇Rψ

d +
{

(~τ + ~∇R) · (~∇RA+ ~τA)
}
ψd
]
Aψd

+ (U − E)Aψd = 0. (S4)

If the following constrain is imposed,

~∇RA+ ~τA = 0, (S5)

Eq. S4 reduces to the form as given below:

− h̄
2

2
A∇2

Rψ
d + (U − E)Aψd = 0. (S6)

On the other hand, when Eq. S5 is left multiplied by A† and the daggered (†) of Eq. S5 is right

multiplied by A, we obtain:

A†~∇RA+ A†~τA = 0, (S7a)

(~∇RA
†)A− A†~τA = 0, (S7b)

and then, on adding Eqs. S7a and S7b, we obtain:

A†~∇RA+ (~∇RA
†)A = 0,

⇒ ~∇R(A†A) = 0,

⇒ A†A = const, (S8)
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which defines A is an orthogonal matrix.

Therefore, we left multiply Eq. S6 by A† and obtain the diabatic representation of SE:

− h̄
2

2
∇2
Rψ

d + (W − E)ψd = 0, (S9)

where

W = A†UA. (S10)

The couplings between electronic states are incorporated within the potential energy matrix (W )2.

While performing BBO-based diabatization of adiabatic PESs and NACTs, it is essential to verify

whether the number of electronic states (N) within the relevant domain of nuclear space can be

considered a “true” SHS for required numerical accuracy. The existence of such SHS can be assessed

by evaluating the matrix elements of Curl Condition3 associated with the NACTs as outlined below.

For any pair of nuclear coordinates (p and q), the scalar form of Eq. S5 can be expressed as:

∇pA+ τpA = 0, (S11)

∇qA+ τqA = 0, (S12)

and by taking cross-derivatives to Eqs. S11 and S12, we obtain:

∇q∇pA+
( ∂
∂q
τp

)
A+ τp

∂

∂q
A = 0, (S13a)

∇p∇qA+
( ∂
∂p
τq

)
A+ τq

∂

∂p
A = 0. (S13b)

Since the matrix element of A are analytic functions of the nuclear coordinates (p and q) and

∇q∇pA = ∇p∇qA, we obtain the following Curl Condition:

∂

∂p
τ ijq −

∂

∂q
τ ijp = (τqτp)ij − (τpτq)ij, (S14)

where the matrix elements (analogous to Yang-Mills field) over p− q plane are represented as:
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F ij
pq =

[ ∂
∂p
τ ijq −

∂

∂q
τ ijp

]
−
[
(τqτp)ij − (τpτq)ij

]
= Zij

pq − Cij
pq. (S15)

When the sub-space is complete, the magnitude of F ij
pq should be zero (0) over the relevant domain

of nuclear configuration space, ensuring that the non-removable component of the NACTs becomes

negligibly small. If this condition is not satisfy for the chosen SHS, it becomes necessary to enlarge

the sub-space in order to diabatize the SE in a “true” sense, achieving the desired level of accuracy.

S3 Explicit Expression of ADT Equations and NACTs for Four state

(N = 4) sub-Hilbert space4

S3.1 ADT Equations

∇RΘ12 = −τ 12 − sin Θ12 tan Θ13τ 13 − cos Θ12 tan Θ13τ 23 − sin Θ12 sec Θ13 tan Θ14τ 14 − cos Θ12 sec Θ13 tan Θ14τ 24

∇RΘ13 = − cos Θ12τ 13 + sin Θ12τ 23 − cos Θ12 sin Θ13 tan Θ14τ 14 + sin Θ12 sin Θ13 tan Θ14τ 24 − cos Θ13 tan Θ14τ 34

∇RΘ23 = − cos Θ13[τ 13 sin Θ12 sec2 Θ13 + cos Θ23 sec Θ14(τ 34 − τ 24 sin Θ12 tan Θ13) tan Θ24

+ sin Θ12 sec Θ13 tan Θ13τ 14 tan Θ14 + sin Θ23τ 14 sec Θ14 tan Θ24 + cos Θ12{τ 23 sec2 Θ13

+ tan Θ13 cos Θ23τ 14 sec Θ14 tan Θ24 + sec Θ13(tan Θ13τ 24 tan Θ14

+ sin Θ23τ 24 sec Θ14 tan Θ24)}]

∇RΘ14 = − cos Θ12 cos Θ13τ 14 + sin Θ12 cos Θ13τ 24 + sin Θ13τ 34

∇RΘ24 = sin Θ23(− sin Θ12 sin Θ13τ 24 sec Θ14 + cos Θ13τ 34 sec Θ14)− sin Θ12 cos Θ23τ 14 sec Θ14

+ cos Θ12(sin Θ13 sin Θ23τ 14 sec Θ14 − cos Θ23τ 24 sec Θ14)

∇RΘ34 = sin Θ12{− sin Θ23τ 14 sec Θ14 sec Θ24 + sin Θ13 cos Θ23τ 24 sec Θ14 sec Θ24}+ cos Θ12[− sec Θ24

{sin Θ13 cos Θ23τ 14 sec Θ14 + sin Θ23τ 24 sec Θ14}]− cos Θ13 cos Θ23τ 34 sec Θ14 sec Θ24
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S3.2 NACTs

τ12 = − cos Θ13 cos Θ23 cos Θ14 cos Θ24∇RΘ12 − sin Θ23 cos Θ14 cos Θ24∇RΘ13 − sin Θ24∇RΘ14

τ13 = cos Θ13 sin Θ23 cos Θ14 cos Θ34∇RΘ12 + cos Θ13 cos Θ23 cos Θ14 sin Θ24 sin Θ34∇RΘ12 − cos Θ23 cos Θ14 cos Θ34∇RΘ13

+ sin Θ23 cos Θ14 sin Θ24 sin Θ34∇RΘ13

τ23 = − sin Θ13 cos Θ24 cos Θ34∇RΘ12 − cos Θ13 sin Θ23 sin Θ14 sin Θ24 cos Θ34∇RΘ12 − cos Θ13 cos Θ23 sin Θ14 sin Θ34∇RΘ12

+ cos Θ23 sin Θ14 sin Θ24 cos Θ34∇RΘ13 − sin Θ23 sin Θ14 sin Θ34∇RΘ13 − cos Θ24 cos Θ34∇RΘ23 − sin Θ34∇RΘ24

τ14 = − cos Θ13 sin Θ23 cos Θ14 sin Θ34∇RΘ12 + cos Θ13 cos Θ23 cos Θ14 sin Θ24 cos Θ34∇RΘ12 + cos Θ23 cos Θ14 sin Θ34∇RΘ13

+ sin Θ23 cos Θ14 sin Θ24 cos Θ34∇RΘ13 − cos Θ24 cos Θ34∇RΘ14

τ24 = sin Θ13 cos Θ24 sin Θ34∇RΘ12 + cos Θ13 sin Θ23 sin Θ14 sin Θ24 sin Θ34∇RΘ12 − cos Θ13 cos Θ23 sin Θ14 cos Θ34∇RΘ12

− cos Θ23 sin Θ14 sin Θ24 sin Θ34∇RΘ13 − sin Θ23 sin Θ14 cos Θ34∇RΘ13 + cos Θ24 sin Θ34∇RΘ23 − cos Θ34∇RΘ24

τ34 = − sin Θ13 sin Θ24∇RΘ12 + cos Θ13 sin Θ23 sin Θ14 cos Θ24∇RΘ12 − cos Θ23 sin Θ14 cos Θ24∇RΘ13

− sin Θ24∇RΘ23 −∇RΘ34
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S4 Adiabatic Potential Energy Curves (PECs) and NACTs for TiO8−
6

unit of BaTiO3 crystal
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FIG. S1: For TiO8−
6 unit, 1D curves of lowest adiabatic PES (u1) and the associated NACT (τφ12) are

presented along (a) Qt2gy , (b) Qt2gz , (c) Qt1uy , and (d) Qt1uz normal modes keeping the other normal

modes fixed at zero (0).
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S5 Local Topographic Parameters and Adiabatic Potential Energy Sur-

faces Around the 2-3 Conical Intersection (CI)

We have calculated the local topographic parameter at the geometry of one of the ‘2-3’ CI5, where

two independent geometrical distortions can linearly break the degeneracy, commonly known as

branching plane vectors. These two vectors are mainly represented as ~g (the half-difference between

the gradients of the two intersecting states) and ~h (the non-adiabatic coupling vectors between the

two states). In order to calculate the local topographic parameters (tilt parameters (sx and sy),

pitch of cone (dgh) and asymmetry of cone (∆gh)) for a double cone, we have employed COLUMBUS

quantum chemistry package6, where the calculated parameters are tabulated below:

sx (eV/Å) sy (eV/Å) ∆gh dgh (eV/Å)

-0.046 -0.004 0.012 0.005

On the basis of above local topographic parameters, the model double cone adiabatic potential

energy surfaces (PESs) have been calculated using the following functional form:

U2 = sx · x+ sy · y − dgh
[x2 + y2

2
+ ∆gh

(x2 − y2)
2

]1/2
(S18)

U3 = sx · x+ sy · y + dgh
[x2 + y2

2
+ ∆gh

(x2 − y2)
2

]1/2
(S19)

and the associated PESs are represented in the following figure:
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FIG. S2: Model adiabatic PESs around ‘2-3’ CI along two branching plane vectors (g and h)

Figure S2 shows that the calculated model PESs using topographic parameters vary linearly at the

close vicinity of CI. In other words, degeneracy is lifted linearly around the ‘2-3’ CI indicating that

the intersections are “conical” not glancing.
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FIG. S3: 1D curves of model adiabatic PESs around ‘2-3’ CI are presented along branching plane vector

(a) g and (b) h. In each case, the PECs are plotted while keeping the other coordinate fixed at zero: (a)

h = 0 and (b) g = 0.
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S6 The t1u normal mode vibration of TiO8−
6 unit

The triply degenerate vibrational modes (t1u) are purely bending modes along XZ, XY and YZ

plane. In ab-initio calculation, two modes are chosen along X and Y direction to locate the PJT

minima.

X-axisY-axis

Z-axis

t1uyz (123.87 cm-1)
t1uxy (123.87 cm-1)t1uxz (123.87 cm-1)

FIG. S4: Schemetic picture of t1u modes of TiO8−
6 calculated at CCSD level for Oh configuration (Ti-O =

2.0 Å). The calculated frequency is 123.87 cm−1. The arrow shows the bending motion of Ti-O bond.
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S7 Optimized Geometry of TiO8−
6 on the ground state
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FIG. S5: The optimized geometry of TiO8−
6 on the ground state.

S8 Geometry of PJT Stabilized TiO8−
6 on the ground state
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FIG. S6: The geometry of PJT stabilized TiO8−
6 on the ground state (extracted from ab-initio calculation

at ρ = 8.2 and φ = 0).
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S9 Integration Paths for Stiff Differential Equations7
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FIG. S7: Panels (a) and (b) depict the numerical solution of the stiff differential equations along path

I and path II. The integration process involves solving the equations first along the bold (blue) line and

subsequently along the dotted (red) lines in each case.

S10 An Overview on Time-Dependent Discrete Variable Representa-

tion (TDDVR) Formalism

The TDDVR formalism has been implemented over wide range of problems involving nuclear dy-

namics on low-dimensional model8,9 systems as well as multi-dimensional multi-surface chemical

processes10–13. While dealing with TDDVR dynamics in multi-dimensional multi-surface molecular

systems, we can formulate the time-dependent Schrödinger Equation (TDSE) within the diabatic

framework in the following manner,

ih̄
∂

∂t
Ξ({Qk}, t) = [T̂nuc{Qk}+ Ŵ({Qk})]Ξ({Qk}, t), (S20)

where T̂nuc{Qk} (= T̂nuc{Qk}·I) and Ŵ({Qk}) denote the kinetic energy operator and diabatic PES

matrix, respectively, let say, expressed in terms of normal mode coordinates, {Qk}. For systems
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with N coupled electronic states, the nuclear wavefunction can be represented as follows,

Ξ({Qk}, t) ≡



ψ1({Qk}, t)

ψ2({Qk}, t)

ψ3({Qk}, t)
...

ψN({Qk}, t)


(S21)

where Ξ({Qk}, t) is normalized [
∫

Ξ†({Qk}, t)Ξ({Qk}, t)
∏p

k=1 dQk= 1] at any time t.

In TDDVR formalism, the wavefunction corresponding to the lth PES, denoted as ψl({Qk}, t) (see

Eq. S21) is represented using TDDVR basis functions (χik(Qk, t)) for a total of p normal modes.

ψl({Qk}, t) =
∑

i1i2...ip

ci1i2....ip,l(t)

p∏
k=1

χik(Qk, t) (S22)

Alternatively, the TDDVR basis functions can be written in terms of Discrete Variable Represen-

tation (DVR) basis and time-evolving plane waves:

χik(Qk, t) = φ(Qk, t)

Nk∑
n=0

ζ∗n(xik)ζn(xk) (S23)

=

Nk∑
n=0

ζ∗n(xik)Φn(Qk, t), (S24)

where the plane wave takes the following form:

φ(Qk, t) = π1/4 exp
( i
h̄

{
pQc

k
(t)[Qk −Qc

k(t)]
})
. (S25)

In the DVR basis functions, harmonic oscillator eigenfunctions are chosen as the primitive bases

(Eq. S23),

ζn(xk) =
(2ImAk

πh̄

)1/4 1√
n!2n
√
π

exp{−(xk)
2/2}Hn(xk), (S26)

where

xk =

√
2ImAk
h̄

(Qk −Qc
k(t)). (S27)

In a similar way, the roots of Nkth Hermite polynomial, HNk
(xk)

14 attain the following expression,

xik =

√
2ImAk
h̄

(Qik(t)−Qc
k(t)), (S28)

S13



resulting into the following expression of TDDVR grid-points:

Qik(t) = Qc
k(t) +

√
h̄

2ImAk
xik . (S29)

It’s important to note that while the centre of the wavepacket ({Qc
k}) and its momentum ({pQc

k
})

are assumed to be time-varying, the imaginary part of the width (ImAk) is introduced as time-

independent.15 In simpler terms, the time dependency arises from the TDDVR grid points, Qiks,

which are influenced by the variables, Qc
k(t) and pQc

k
(t).

The Gauss-Hermite (G-H) basis functions for the kth normal mode (Φn(Qk, t) in Eq. S24) are con-

firmed to be orthonormal16, with the ground state representing the Gaussian Wave Packet (GWP).

Similarly, the TDDVR basis functions χiks in Eq. (S23) for the kth mode adhere to orthogonality,

although they do not constitute a normalized set16.

By substituting the TDDVR representation of wavefunctions (Eqs. S21 - S28) in the TDSE (Eq.

S20), we get the following form of TDDVR matrix equation for the lth PES,

ih̄AĊl = Ht
llCl + A

∑
l′ 6=l

Wll′Cl′ (S30)

which can be transformed into the following convenient (symmetric) form through a similarity

transformation,

ih̄Ḋl(t) = A−1/2Ht
llA
−1/2Dl +

∑
l′ 6=l

Wll′Dl′ (S31)

where Dl = A1/2Cl. The detailed expression of the TDDVR coefficients, di1i2....ip,l and the specific

forms of various component matrices {Xk} and {Yk}) of Ht are provided in our earlier articles16–18.

On the other hand, the center of the wavepacket ({Qc
k}) and its momentum ({pQc

k
}) for the kth mode

involve the following classical equations of motion (EOMs):

Q̇c
k(t) =

pQc
k
(t)

µ
, (S32)

ṗQc
k
(t) = −dW ({Qk})

dQk

∣∣∣
Qk(t)=Q

c
k(t)

. (S33)

While deriving a first principle based explicit expression of ṗQc
k

for multi-dimensional multi-surface

systems, it is necessary to employ the Dirac-Frenkel variational principle.16–19 Interested readers

S14



may refer to the aforementioned works for a thorough explanation of the initialization of wavepackets

and their subsequent propagation over the diabatic PESs.

S11 Convergence Test of TDDVR Basis Set for Spectral Profile

In this present work, while performing the dynamics and calculating the PE spectra of the ti-

tanate (TiO9−
6 ) system, we have optimized the basis functions, starting with smaller one, such

as (3,3,3,3,3,3) [729 grid points] and then, going to the larger sets, such as (15,15,15,15,15,15)

[1,13,90,625 grid points], to find the best combination for accurate calculations in TDDVR dynam-

ics. In the above sets, the sequence of grid points represents six modes (t2g and t1u normal modes)

of fundamental vibrational frequencies. On the process of the convergence analysis to obtain the

converged spectral profiles for combined four states (A1g and T1u) (13,7,7,13,11,11), total 10,02,001

number of grid points are involved. In order to explore such convergence, four representative PE

spectra are shown in the Figure S8.
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FIG. S8: TDDVR calculated spectra obtained from BBO based diabatic PESs are presented for four sets

of basis functions. All sets are almost superimposed with each other and therefore, the set 13,7,7,13,11,11

is used as the optimized set of basis function.
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S12 Theoretical and Experimental: Spontaneous Polarization vs Tem-

perature
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FIG. S9: Dependence of polarization on temperature for BaTiO3 single crystal for tetragonal to cubic

phase by Li et al.20.
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FIG. S10: Temperature dependence of the order parameter 〈Q〉 (in Å) from tetragonal to cubic phase by

V. Polinger21.
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FIG. S11: Spontaneous polarization as a function of temperature for tetragonal to cubic phase by Walter

J. Merz22.
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