Electronic supplenmentary information for

Efficient photoelectrocatalytic performances with WO₃/BiVO₄ heterojunction photoanode: applied bias-promoted photoinduced charge transfer and separation

Yunni Liu,^a Yuna Kang,^a Zhenyi Zhang^b and Jun Lin^{*a}

^a School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.

*Email: jlin@ruc.edu.cn

^b Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, P. R. China.

1. Calculation of the applied bias photon to current efficiency (ABPE) ^{1,2}

The applied bias photon to current efficiency (ABPE) is calculated from the LSV curve to assess the PEC performance of different photoanodes using the following equation:

$$ABPE = \frac{J_{ph} (1.23 - V)}{P_{light}}$$
(1)

where J_{ph} represents the photocurrent density, V is the applied bias, P_{light} is the power density of the incident light.

2. Calculation of charge separation and charge injection efficiencies ³⁻⁶

The photocurrent density generated by PEC water oxidation can be described by the following formula:

$$J_{PEC} = J_{absorbed} \times P_{charge separation} \times P_{charge injection}$$
(2)

where $J_{absorbed}$ represents the photocurrent density generated by the complete conversion of the absorbed irradiation absorbed by the material, which is constant with fixed semiconductor photocatalyst and lighting source. $J_{absorbed}$ can be calculated using the following equation:

$$J_{absorbed} = J_{max} \times LHE$$
(3)

where LHE is light-harvesting efficiency (LHE = $1 - 10^{-A_{(\lambda)}}$, $A_{(\lambda)}$ is the absorbance at specific wavelength λ), and J_{max} is the maximum photocurrent density achievable assuming 100% IPCE for photons with higher

energy than the bandgap of the photoanode. This was performed by the conversion of a 300 W xenon lamp (LabSolar II, Perfect Light Co., Ltd) equipped with a UV-cutoff filter ($\lambda \ge 420$ nm) from radiation energy (W m⁻² nm⁻¹) to number of photons (s⁻¹ cm⁻² nm⁻¹) using the Equation (4) for each wavelength:

number of photons
$$=\left(\frac{\text{radiation energy}}{\left(\frac{\mathbf{c} \times \mathbf{h}}{\lambda}\right)}\right) \times \frac{1 \text{ m}^2}{10000 \text{ cm}^2}$$
 (4)

where radiation energy is the energy for each wavelength in the reference spectrum (unity in W m⁻² nm⁻¹). c is 2.99 ×10⁸ m s⁻¹ (speed of light in a vacuum). h is 6.63 ×10⁻³⁴ J s (Planck constant) and λ is the wavelength of photon (unity in m).

Next, the number of photons is converted to mol of photons using the Equation (5):

mol of photons = number of photons
$$/ N_A$$
 (5)

where N_A is 6.022 ×10²³ (Avogadro constant). Then, the mol of photons is converted to current (mA) using the Equation (6):

in which F is 96485.33 C mol⁻¹ and 1000 is a constant to result the unity at mA cm⁻² nm⁻¹.

In this way, the theoretical maximum photocurrent density J_{max} was determined by trapezoidal integration of the photocurrent spectrum (mA cm⁻² nm⁻¹) as a function of wavelength (nm) above the optical bandgap of the photoanodes. The bandgaps of WO₃ and WO₃/BiVO₄-15 were determined by diffuse reflectance spectroscopy (DRS) to be 2.70 eV and 2.55 eV, respectively. Base on the experimental data (**Fig. S9**), the J_{absorbed} was calculated to be 7.55 mA cm⁻² for WO₃ and 10.02 mA cm⁻² for WO₃/BiVO₄-15.

Moreover, $P_{charge separation}$ is the charge separation yield of the photogenerated charge carriers. $P_{charge injection}$ is the charge injection yield from electrode to electrolyte, reflecting the efficiency of water oxidation process. This equation describes energy losses occurring at different stages of the PEC water oxidation reaction. To evaluate the efficiency of each process, the widely used hole scavenger Na₂SO₃ (0.1 M) was added to the electrolyte (0.5 M Na₂SO₄) to completely consume the holes accumulated on the surface. By this way, the charge injection efficiency was assumed to be 100%, allowing for the precise determination of charge separation efficiency. As described above:

$$J_{Na_2SO_3} = J_{absorbed} \times P_{charge separation}$$
(7)

Therefore, the charge separation efficiency can be calculated as follows:

$$P_{\text{charge separation}} = J_{\text{Na}_2 \text{SO}_3} / J_{\text{absorbed}}$$
(8)

$$P_{\text{charge injection}} = \frac{J_{\text{PEC}}}{J_{\text{Na}_2\text{SO}_3}}$$
(9)

Fig. S1 Schematic illustration for PEC system using the WO₃/BiVO₄-15 photoanode.

Fig. S2 (a) Wide-angle XRD patterns and (b) magnified XRD patterns in the range of 16-32°.

Fig. S3 (a) TEM image of WO₃/BiVO₄-15 for TEM-EDS mapping and the corresponding EDS element maps of

(b) W, (c) O, (d) Bi, (e) V, respectively.

Fig. S4 XPS survey spectra of WO₃ and WO₃/BiVO₄-15.

Fig. S5 (a) XPS-VB spectra. (b-c) Tauc plots of WO₃ and BiVO₄. (d-f) Mott–Schottky plots of WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes measured at fixed frequencies of 1400, 1600 and 1800 Hz.

Fig. S6 (a) PEC performances for RhB degradation coupled with simultaneous cathodic H_2 evolution using the WO₃/BiVO₄-15 photoanode in the presence of different scavengers. (b-e) PL spectra of the reaction solution for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes with increasing PEC reaction time (excitation at 315 nm). (f) ESR spectra obtained with DMPO as a trapping agent after 1 h reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes in PEC reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes with increasing PEC reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes with increasing PEC reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes in PEC reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes with increasing PEC reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes in PEC reaction for WO₃, BiVO₄ and WO₃/BiVO₄-15 photoanodes in PEC process.

Fig. S7. (a) LSV curves of WO₃ and WO₃/BiVO₄-15 photoanodes measured in 0.5 M Na₂SO₄ electrolyte under visible-light irradiation ($\lambda \ge 500$ nm). (b) LSV curves measured in 0.5 M Na₂SO₄ electrolyte under visible-light irradiation ($\lambda \ge 420$ nm) with and without a hole scavenger.

Fig. S8 (a), (b), and (c) EIS spectra of WO_3 and $WO_3/BiVO_4$ -15 photoanodes under different applied bias potentials.

Fig. S9 (a) Visible-light irradiation spectrum of a 300 W xenon lamp equipped with a UV-cutoff filter ($\lambda \ge 420$ nm) showing the power density (mW cm⁻² nm⁻¹) as a function of wavelength. (b-c) UV-vis absorption spectra and light harvesting efficiencies of WO₃ and WO₃/BiVO₄-15 photoanodes.

Photoanode	Electrolyte	Photocurrent	H ₂ and O ₂ evolution/ Pollutants removal	References
Surface dispersed BiVO ₄ /WO ₃ nanoplates	0.2 M KPi buffer Solution	3.53 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	7
WO ₃ /BiVO ₄ /OER (FeOOH/NiOOH)	0.5 M Na ₂ SO ₃	5.0 mA/cm ² at 1.23 V vs. RHE	H ₂ : 145 μmol/cm ² O ₂ : 70 μmol/cm ² (120 min)	8
F:FeOOH/BiVO ₄ /WO ₃	0.1 M KPi buffer solution	3.1 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	9
WO ₃ with hexagonal- monoclinic heterophase junction supported on W mesh (hm-m-WO ₃ /W mesh)	0.1 M Na ₂ SO ₄	5.6 mA/cm ² at 1.2 V <i>vs.</i> RHE	99.9% of 20 ppm BPA; 60.9% of TOC (150 min)	10

Table S1. Comparison of our work with the recent WO₃ heterojunction photoanodes in PEC system.

CoOOH/WO ₃	0.1 M Na ₂ SO ₄	3.2 mA/cm ² at 1.2 V vs. RHE	99.9% of 20 ppm 4-FP; 75.8 % of TOC (150 min)	11
WO ₃ /CdS/Co-Pi	0.1 M phosphate buffer solution + 0.5 M Na ₂ SO ₃	5.85 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	12
Mo:BiVO ₄ nanoparticle- coated WO ₃	0.5 M Na ₂ SO ₄ + 0.1 M Na ₂ SO ₃	5.8 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	13
CoP/BiVO ₄ :WO ₃	0.5 M Na ₂ SO ₄	2.81 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	14
WO ₃ /BiVO ₄ /NiOOH	2 M sodium borate (NaBi)	3.0 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	15
WO ₃ /BiVO ₄ core–shell hetero-nanostructure	0.5 M phosphate buffer (pH 7) with 1 M Na ₂ SO ₃	4.15 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	16
(WO ₃ /BiVO ₄)-OV/CoPi	0.1 M Na2SO4 and 0.1 M KPi	2.3 mA/cm ² at 1.23 V vs. RHE	H ₂ : - O ₂ : -	17
Cobalt–phosphate (Co– Pi) co-catalyst decorated WO ₃ /Mo-BiVO ₄ photoanode	0.5 M K ₂ SO ₄	5.38 mA/cm ² at 1.23 V <i>vs.</i> RHE	H ₂ : - O ₂ : -	18
WO ₃ /BiVO ₄ -15	0.5 M Na ₂ SO ₄	4.46 mA/cm ² at 0.5 V vs. Ag/AgCl	H ₂ : 258.98 μmol/h/cm ² 99.34 % of 10 ppm RhB (60 min)	Our work

References

1 M. Tayebi, Z. Masoumi, M. Kolaei, A. Tayyebi, M. Tayebi, B. Seo, C.-S. Lim, H.-G. Kim and B.-K. Lee, *Chem. Eng. J.*, 2022, **446**, 136830.

2 F. Lin, Y.-Y. Gu, H. Li, S. Wang, X. Zhang, P. Dong, S. Li, Y. Wang, R. Fu, J. Zhang, C. Zhao and H. Sun, *Sci. Total Environ.*, 2021, **796**, 148931.

3 D. Coelho, J. P. R. S. Gaudêncio, S. A. Carminati, F. W. P. Ribeiro, A. F. Nogueira and L. H. Mascaro, *Chem. Eng. J.*, 2020, **399**, 125836.

- 4 R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao and M. Wei, *Electrochim. Acta*, 2018, 274, 217-223.
- 5 K. Li, Y. Yin and P. Diao, *Small*, 2024, **20**, 2402474.
- 6 K.-H. Ye, Z. Wang, J. Gu, S. Xiao, Y. Yuan, Y. Zhu, Y. Zhang, W. Mai and S. Yang, Energy Environ. Sci.,

2017, **10**, 772-779.

- 7 X. Fan, Q. Chen, F. Zhu, T. Wang, B. Gao, L. Song and J. He, *Molecules*, 2024, 29, 372.
- 8 B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. I. Kim, Y. Son and J. H. Park, *J. Mater. Chem. A*, 2018, **6**, 2585-2592.

9 Y. Li, Q. Mei, Z. Liu, X. Hu, Z. Zhou, J. Huang, B. Bai, H. Liu, F. Ding and Q. Wang, *Appl. Catal. B Environ. Energy*, 2022, **304**, 120995.

10 Q. Ma, R. Song, F. Ren, H. Wang, W. Gao, Z. Li and C. Li, *Appl. Catal. B Environ. Energy*, 2022, **309**, 121292.

- 11 Q. Ma, Z. Ning, M. Fang, G. Zhang, H. Guo, J. Zhou and T. Wang, Chem. Eng. J., 2024, 498, 155551.
- 12 J. Sun, L. Sun, X. Yang, S. Bai, R. Luo, D. Li and A. Chen, *Electrochim. Acta.*, 2020, 331, 135282.
- 13 K. Kim, S. K. Nam, J. H. Park and J. H. Moon, J. Mater. Chem. A, 2019, 7, 4480-4485.
- 14 N. D. Quang, P. C. Van, S. Majumder, J.-R. Jeong, D. Kim and C. Kim, J. Alloys Compd., 2022, 899, 163292.
- 15 W. Fang, Y. Lin, R. Xv and L. Fu, ACS Appl. Energy Mater., 2022, 5, 11402-11412.
- 16 B. R. Lee, M. G. Lee, H. Park, T. H. Lee, S. A. Lee, S. S. M. Bhat, C. Kim, S. Lee and H. W. Jang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 20004-20012.

17 J. Liu, W. Chen, Q. Sun, Y. Zhang, X. Li, J. Wang, C. Wang, Y. Yu, L. Wang and X. Yu, *ACS Appl. Energy Mater.*, 2021, **4**, 2864-2872.

18 Q. Zeng, J. Li, L. Li, J. Bai, L. Xia and B. Zhou, Appl. Catal. B Environ. Energy, 2017, 217, 21-29.