Machine learning with new functional structure descriptors for

design and screening of ionic liquids in CO₂ efficient capture

Ranran Geng^a, Wenjuan Deng^a, Zhiqiang Hu^a, Jianlei Wang^a,

Yuanyuan Zhao^b, Baichuan Zhou^b, Guocai Tian^{a, b, *}

^a Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

^b State Key Laboratory of Complex Non-Ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China

* Corresponding author: tiangc@kust.edu.cn (Guocai Tian)

Fig. S1 SHAP feature importance analysis in CatBoost, LightGBM, XGBoost, and GBDT models.

Fig. S2 (a)Relationship between the amount of n in $C_nH_{(2n+1)}$ and the solubility of CO₂; (b)Relationship between the amount of n in $C_nF_{(2n+1)}$ and the solubility of CO₂.

Equations:

Square of Determination Coefficient (R²):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{exp} - \bar{y}_{exp})^{2}}{\sum_{i=1}^{n} (y_{exp} - y_{pre})^{2}}$$

(S1)

Mean Squared Error (MSE) :

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_{pre} - y_{exp})^2$$
(82)

Mean Absolute Error (MAE) :

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_{pre} - y_{exp}|$$
(83)

Residuals: $Residuals = y_{exp} - y_{pre}$, (S4)

where y_{exp} denotes the experimental value, y_{pre} denotes the predicted value, and \bar{y}_{exp} denotes the average of the experimental values.