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Table S1. Lattice parameters after structural optimization

Strain 

(%)

Average Pb-I bond 

length (Å)

Average I-Pb-I bond 

angle (°)

Energy (eV)

-5 3.036 170.091 -56.62

-4 3.069 170.220 -56.78

-3 3.107 170.327 -56.90

-2 3.130 170.330 -56.98

-1 3.173 170.324 -57.03

0 3.207 170.345 -57.04

1 3.239 170.329 -57.03

2 3.272 170.333 -57.00

3 3.303 170.335 -56.95

4 3.347 170.246 -56.88

5 3.395 170.122 -56.80

Table S2. Calculated bandgaps using different methods.

Method α-FAPbI3

PBE 1.43

PBE+SOC 0.45

G0W0+SOC 1.54
Bandgap (eV)

Expt. 1.48 1, 2

Table S3. Polarizability under different strains.

Strain (%) Polarizability

-5 6.95

-4 6.49

Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2025



-3 6.10

-2 5.78

-1 5.50

0 5.26

1 5.05

2 4.86

3 4.70

4 4.56

5 4.10

Fig. S1. (a) Average Pb-I bond length (Å) for the optimized structure

(b) Average Pb-I bond angle (°) for the optimized structure.



Fig. S2. Different crystal planes of α-FAPbI3.

Fig. S3. The energy bands of FAPbI3 under different strains range from -5% to -2% 

strain for (a-d) and from 2% to 5% strain for (e-h).

1.2 Calculation of effective mass of electrons, effective mass of holes, and exciton 

binding energy

To analyze carrier transport behavior, we calculated the electron effective ,  *
em

hole effective masses  and reduced carrier effective masses  by averaging  *
hm  *

rm



along the band-edge k-path. The effective mass is calculated using the following 

equations: 
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where h is the reduced Planck constant,  is the band energy of VBM and ( )E k

CBM, and  is the wave vector.𝑘

The exciton binding energy arises from the Coulomb interaction between an 

electron and a hole, which governs the separation and recombination processes of 

electron-hole pairs. This energy was calculated using the formula derived from the 

Wannier exciton model 3:

(3)
 

* 4

22 2
0

1
2 4

r
eb

m eE
 

 
h

Where  is the reduced effective mass，  is static dielectric constant，  is *
rm  h

reduced Planck Constant, is Vacuum permittivity.0

Fig. S4. (a) The real part dielectric function, (b) the imaginary part dielectric 

function.

1.3 Optical properties calculation



The dielectric function, a key parameter for characteristics of the optical 

properties of bulk materials, is defined as:

(4)     r ii      

Where  represents the charge storage capacity and  corresponds to the r i

material’s absorption and energy dissipation. To investigate the optical properties of 

FAPbX3, we calculated within the 0-3 eV energy range (Fig. S3). Subsequently, we 

derived key optical parameters including absorption coefficient ( ), refractive index 

(n), extinction coefficient ( ), reflectivity (R), and energy loss function (L) using the 

following formulas 4:
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1.4 Calculation of transition dipole moment and joint density of states

The transition dipole moment is the matrix element of the electric dipole moment 

operator between quantum states, characterizing the transition strength between two 

energy levels. Its expression is: 

(10)| |f ip er 

Where  is the initial state，  is the final state， e is the elementary | i |f

charge，r is the position vector，and  is proportional to the transition probability 2p

.5



The joint density of states (JDOS) describes the number of electron state pairs in 

a material that satisfy momentum and energy conservation during transitions from the 

valence band to the conduction band. The calculation process is as shown in the 

following formula.6

(11)3
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Where  is the Dirac delta function, enforcing energy conservation ( ) 

. and  are the energies of the conduction and valence bands c vE E   h (k)cE (k)vE

at wave vector  respectively, and  is the incident photon energy. The integration k h

spans the entire Brillouin zone.

The optical absorption coefficient  is related to JDOS and  as follows: 2p
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1.5 Defect properties calculation
In examining the defect formation energy (DFE) of point defects in FAPbI3, a 

2×2×2 supercell is employed, as shown in Fig. S4, with a point defect formed into the 

supercell to facilitate the averaging of defect volume 7. For the calculation of charged 

defects, it is assumed that the additional or missing electrons from charged defects 

come from an external electron reservoir or enter the supercell interior, with their 

energy equivalent to the Fermi energy, using the equation 8:
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Where  represents the system containing defects,  is the (defect)E (perfect)E

energy of the perfect system without defects; n and μ are the number of atoms and 

the corresponding chemical potentials, individually. For vacancy defects，ni＞0, 

and for interstitial defects, ni＜0. In order to ensure the formation of perovskite, the 

chemical potentials of FA, Pb, and I satisfy the following relationship:

(15) 33 FAPbIFA Pb I H     



Here,  represents the formation energy of perovskite in the cubic phase. H

We selected the cubic phase of Pb solid, the orthorhombic phase of I2 solid, and 

the cubic phase of FA to calculate their chemical potentials respectively. In order 

to prevent the formation of FAI and PbI2 as by-products, it is necessary to ensure that 

the chemical potential values satisfy the following conditions:

(16)(FAI)FA I H   

(17)22 (PbI )Pb I H   

In accordance with equations (2) - (4), the chemical potential regions under 

equilibrium growth conditions for the perovskite were calculated. In this research, the 

moderate chemical potentials of FA, Pb, and I were selected for calculating DFE. The 

last term , q represents the charge of the defect; EVBM represents ( )F VBM corrq E E E 

the energy level at the top of the valence band; EF is the Fermi-level at the top of its 

relative valence band, the top of the valence band , the Fermi-level are 0FE 

permitted to fluctuate within the band gap, with the upper limit of the valence band 

maximum (VBM) aligned with the lower limit of the conduction band minimum 

(CBM) in a defect-free FAPbI3 crystal, which serves as the reference point for the 

band gap;  is a correction term added to avoid spurious interactions of charged corrE

defects between supercells so that the potential energy in the defective supercells 

corresponds to the bulk potential energy. 9, 10 The specific correction scheme 

employed in this work was the Makov–Payne (MP) correction,11 expressed as 

equation 14, where  denotes the Madelung constant for the finite supercell M

geometry,  represents the static dielectric constant of the material, and   L

corresponds to the characteristic dimension of the supercell.



Fig. S5. (a) Interstitial defects and (b) vacancy defects in a 2×2×2 FAPbI3 super cell.

1.6 Diffusion coefficient and ionic mobility

Molecular dynamics simulations were conducted using the NVT ensemble 

(canonical ensemble) with a Langevin thermostat at 300K,12, 13 employing a time step 

of 1 fs for a total duration of 10 ps. Accurate root-mean-square displacement (RMSD) 

calculations required a 5 ps equilibration period before analysis.

The mean square displacement (MSD) is defined as the average of the square of 

the displacement of a particle over a given time interval. Its direct relationship with 

the diffusion coefficient  is governed by the Einstein relation 14: D

(18)1 (MSD)lim
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


When the MSD exhibits linear growth with time (in the diffusive regime), the 

slope corresponds to 6D, i.e., .MSD 6D t 

The relationship between the diffusion coefficient and ionic mobility is 

established by the Nernst-Einstein relation 15: 
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