Supporting Information

How Small Can a Catenane Be,

if We Consider Quantum Tunnelling?

Sindy Julieth Rodríguez-Sotelo,[†] Juan Julián Santoyo-Flores,[†] and Sebastian Kozuch*

All the geometries and Gaussian output files are available on the ioChem-BD platform for computational chemistry and materials science teams, at the following link: <u>https://iochem-bd.bsc.es/browse/review-collection/100/446103/f7f3084765a90cd35352cc49</u>

Electronic structure method

The selection of the electronic structure method required careful consideration of the state of the system when breaking the C-C bond. At large C-C distances, when the molecule is fragmented, the system necessarily is a diradical, with one unpaired electron on each terminal methylene. However, at the transition state the bond length is at an intermediate distance, near the crossing between the close-shell singlet (CSS) and the open-shell singlet (OSS) surfaces.

When testing several functionals for the ring opening on strained catenanes, we observed that some of them provided an OSS state at the transition state (such as M06-2X), while most others indicated that CSS was the lowest energy state (such as PBE, the selected functional). The correct selection of the functional is therefore crucial in this situation to obtain a qualitatively correct potential energy surface. In previous studies¹ we concluded that, despite the possible spin contamination, unrestricted CCSD(T) can provide accurate energies for reactions in the OSS surface, thus offering a good benchmark for the functional selection in terms of threshold energies and electronic state.

On the other hand, the size of the studied molecules makes it impossible to compute canonical CCSD(T) with a relevant basis set. For the $R_{10}R_{10}$ system, we could compute CCSD(T)/cc-pVDZ, which is not enough for accurate energies, but it is useful to establish the ground state structure at the transition state. Using the geometry at the TPSSh/6-31g(d) level, coupled cluster clearly indicates that CSS is the correct energy surface in this section of the reaction, with a threshold energy of 14 kJ.mol⁻¹, against 28 kJ.mol⁻¹ for the OSS. This was obtained with uCCSD(T) using uHF as reference, which provides a notoriously wrong OSS state 48 kJ.mol⁻¹ lower than the CSS (a reason why functionals with high exact exchange are problematic for this particular reaction). The T1 diagnostics were below 0.01, further justifying the use of CSS CCSD(T) as a benchmark. We decided to use DLPNO-CCSD(T1)/cc-pVQZ with tightPNO for the single point reference energies, as it provides the best balance between accuracy and tractable computational time.

In the same sense, due to the large computational cost of SCT, rates with a heavy functional/basis set combination were intractable for systems of this size. Therefore, upon comparison with the DLPNO-CCSD(T1) benchmark, we tested several functionals with the small 6-31G(d) basis set (see Table **S1**). Clearly DFT tends to overbind, with worse results usually obtained with hybrid functionals (except for B3LYP and M06). For the sake of computational cost, we decanted for the best GGA functional of the set, i.e. PBE. In any case, to enhance the accuracy, the PES was corrected with the ISPE method using DLPNO-CCSD(T1), as already explained in the main text.

Table S1.	Threshold	energies	and errors	in kJ.mol⁻¹	for several	functionals	with 6-31G	(d) basis set,	and the
benchmark	reference	with DLP	NO-CCSE)(T1)/cc-p∖	/QZ/tightPN	O//TPSSh/6	6-31g(d) for	R ₁₀ R ₁₀ .	

	∆ <i>E</i> ‡	Err
B3LYP	9	2
PBE	12	6
M06	13	6
BB95	13	7
TPSS	15	9
B98	16	9
TPSSh	21	14
M06-2X	23	17
wB97XD	26	19
PBE0	27	21
B1B95	32	25
MN15	37	31
DLPNO-CCSD(T1)	6.4	

1 Y. Avivi, J. J. Santoyo-Flores, T. Schleif and S. Kozuch, Cryogenic Rearrangements of Spiroheptadiyl: Light- or Heavy-Atom Quantum Tunneling?, *J. Phys. Chem. Lett.*, 2024, 163–167.

 $R_{10}R_{13}$

 $R_{10}R_{12}$

 $R_{10}R_{14}$

 $R_{10}R_{15}$

Figure S1. Color scale for the C–C bond lengths of $R_{10}R_m$ structures within the following intervals: dark blue between 1.30 and 1.55 Å, cyan between 1.55 Å and 1.63 Å, and red for bond lengths exceeding 1.63 Å.

Table S2. C-C bond lengths (Å) for the optimized structures of $R_{10}R_m$.

System		R10				R _m						
	ľ1	r ₂	r ₃	r 4	r5	r ₆	r' 1	r' 2	r' 3	r' 4	r' 5	r'6
R10R10	1.75	1.66	1.60	1.61	1.61	1.61	1.76	1.64	1.60	1.63	1.63	1.59
R10R11	1.70	1.65	1.60	1.63	1.63	1.60	1.76	1.66	1.59	1.61	1.60	1.58
R10R12	1.68	1.64	1.61	1.64	1.64	1.61	1.73	1.64	1.58	1.58	1.58	1.57
R10R13	1.65	1.66	1.64	1.61	1.60	1.64	1.76	1.64	1.57	1.56	1.57	1.56
R10R14	1.67	1.65	1.62	1.62	1.62	1.62	1.75	1.62	1.58	1.56	1.55	1.55
R10R15	1.64	1.65	1.64	1.61	1.64	1.65	1.79	1.61	1.57	1.55	1.56	1.56
R10R20	1.67	1.66	1.63	1.66	1.66	1.62	1.71	1.56	1.54	1.55	1.55	1.55

Figure S2. Color scale for the C–C bond lengths of $R_{11}R_{11}$ within the following intervals: dark blue between 1.30 and 1.55 Å, cyan between 1.55 Å and 1.63 Å, and red for bond lengths exceeding 1.63 Å.

Table S3. C-C bond lengths (Å) for $R_{11}R_{11}$.

	R11R11		R11R11
r 1	1.70	r' 1	1.71
r 2	1.65	r '2	1.64
r ₃	1.60	r '3	1.60
r 4	1.60	r' 4	1.60
r 5	1.60	r '5	1.60
r 6	1.59	r '6	1.59

Figure S3. Color scale for the C–C bond lengths of $R_{10}L_m$ within the following intervals: dark blue between 1.30 and 1.55 Å, cyan between 1.55 Å and 1.63 Å, and red for bond lengths exceeding 1.63 Å.

Table S4. C-C	Table S4. C-C bond lengths (Å) for R ₁₀ L _m .						
		R ₁₀					

	R ₁₀				L _m										
R10L4	1.67	1.66	1.64	1.63	1.63	1.63	1.67	1.56	1.56						
R10L6	1.67	1.66	1.64	1.63	1.63	1.63	1.68	1.57	1.57	1.54	1.54				
R10L8	1.67	1.66	1.64	1.63	1.63	1.63	1.68	1.57	1.57	1.54	1.54	1.53	1.53		
R10L10	1.67	1.66	1.64	1.63	1.63	1.63	1.68	1.57	1.57	1.54	1.54	1.54	1.54	1.53	1.53

٦

Table S5. ZPE included threshold energies in kJ.mol⁻¹, imaginary frequencies at the transition state for C-C bond breaking in \mathbf{R}_{10} , and tunnelling and semi-classical rate constants in s⁻¹ from ground state QT (10 K) and at liquid N₂ conditions (77 K) for catenanes' decomposition of the small ring.

			10	К	77 K		
	ΔE^{+}	V	<i>К</i> qт	<i>k</i> sc	<i>К</i> QТ	<i>k</i> sc	
R10R11	29.9	264	10 ⁻¹¹	10 ⁻¹⁴⁷	1×10 ⁻⁷	7×10 ⁻⁷	
$R_{10}R_{12}$	41.9	247	10 ⁻³⁸	10 ⁻²¹²	10 ⁻¹⁶	10 ⁻¹⁷	
R ₁₀ R ₁₃	55.0	243	10 ⁻⁵⁹	10 ⁻²⁸¹	10 ⁻²⁵	10 ⁻²⁶	
R ₁₀ R ₁₄	48.8	240	10 ⁻⁴³	10 ⁻²⁴⁶	10 ⁻²¹	10 ⁻²¹	
R10R15	98.3	386	10 ⁻⁴²	10 ⁻²⁸⁹	10 ⁻²⁶	10 ⁻²⁷	
$R_{10}R_{20}$	71.2	214	-	-	10 ⁻³⁷	10 ⁻³⁶	
$R_{10}L_4$	65.5	220	-	-	10 ⁻³²	10 ⁻³²	
R ₁₀ L ₆	65.2	216	-	-	10 ⁻³³	10 ⁻³³	
R ₁₀ L ₈	65.8	215	-	-	10-33	10 ⁻³³	
R ₁₀ L ₁₀	65.7	217	-	-	10-33	10 ⁻³³	

Table S6. Temperature (k), tunnelling and semi-classical rate constants in s⁻¹ for R₁₁R₁₁

T (K)	К QТ	k sc
5	7×10 ⁻¹²	10 ⁻²⁴²
10	7×10 ⁻¹²	10 ⁻¹¹⁵
20	7×10 ⁻¹²	10 ⁻⁵²
30	1×10 ⁻¹¹	10 ⁻³¹
40	3×10 ⁻¹¹	10 ⁻²⁰
50	2×10 ⁻¹⁰	6×10 ⁻¹⁴
60	2×10⁻ ⁸	1×10 ⁻⁹
70	8×10 ⁻⁶	1×10⁻ ⁶
77	3×10 ⁻⁴	8×10 ⁻⁵

Polyrate example input file

.dat	OPTMIN ohook	6	17	*RATE
*GENERAL	OPTTS ohook	7	18	FORWARDK
TTTLE	*REACT1	8	19	SIGMAF 1
pr r11x2 css	INITGEO hooks	9	20	TST
FND	GEOM	10	21	CVT
HDI TODE	1	11	22	PRDELG
TOMO	2	12	23	PRPART rtp
1 II	3	13	24	-
	4	14	25	TEMP
2.0	5	15	2.6	4
3 H	6	16	27	5
4 H	7	17	28	6
5 C	0	10	20	0
6 Н	0	10	2.9	10
7 C	10	19	21	10
8 H	10	20	31	20
9 Н		21	32	30
10 C	12	22	33	40
11 н	13	23	34	50
12 C	14	24	35	75
13 C	15	25	36	77.355
14 H	16	26	37	100
15 U	17	27	38	125
16 0	18	28	39	150
17 11	19	29	40	175
1/ H	20	30	41	194.7
18 H	21	31	42	200
19 C	22	32	43	225
20 Н	22	33	10	250
21 C	24	34	15	273 15
22 Н	24	34	45	273.13
23 C	25	35	46	275
24 C	26	36	4 /	298.15
25 Н	27	37	48	300
26 Н	28	38	49	325
27 н	29	39	50	350
28 н	30	40	51	373.15
29 H	31	41	52	375
30 H	32	42	53	400
21 U	33	43	54	END
20 11	34	44	55	
52 п 22 и	35	45	56	ANALYSIS
33 H	36	46	57	4
34 H	37	47	58	5
35 C	38	48	59	6
36 H	39	49	60	8
37 Н	40	50	61	10
38 C	40	50	62	10
39 н	41	51	62	20
40 C	42	52	63	30
41 H	43	53	64	40
42 H	44	54	65	50
43 C	45	55	66	/5
44 H	46	56	END	77.355
45 C	47	57	SPECIES nonlints	100
46 C	48	58	PROJECT	125
47 H	49	59		150
48 H	50	60	*PATH	175
49 C	51	61	#SYMMETRY	194.7
50 u	52	62	INTMU 3	200
50 II 51 U	53	63	SSTEP 0.001	225
51 n 52 c	54	64	RPM pagem	250
52 U	55	65	SRANGE	273.15
JЗ П	56	66	SLP 20.	275
54 0	57	END	SLM -20.	298.15
55 H	58	SPECIES nonlinro	END	300
56 C	59	*START	SPECSTOP	325
57 C	60	INITCEO books	CUDVE VMED	350
58 H	61	CEOM	DEDCENTROWN 00 0	373 15
59 Н	62	1	FND	375
60 н	62	1	END	375
61 H	63	2	PRPATH	400
62 Н	64	3	coord 1 2	END
63 H	60	4	XMO1	
64 H	66	5	treq 192	EAC'I'
65 Н	END	6	END	6.10.
66 Н	SPECIES nonlinrp	7		10. 20.
END		8	*TUNNEL	20. 50.
	*PROD1	9	ZCT	50. 100.
NOSUPERMOL	INITGEO hooks	10	SCT	200. 225.
*SECOND	GEOM	11	QRST	300. 325.
HESSCAL bhook	1	12	harmonic	END
FDDINT	2	13	mode 192	
	3	14	states all	GTLOG
DDINE	4	15	END	
FRINT	5	16		

.70

*GRGENERAL GRRESTART

*GRSTART CHARGE 0 MULTIPLICITY 1

*GRCOMMON

GRENER %mem=100gb %nproc=32 #n pbepbe/6-31g(d) units(au) fchk nosymm END

GRFIRST
%mem=100gb
%nproc=32
#n pbepbe/6-31g(d)units(au) fchk nosymm force
END

GRSEC

%mem=100gb %nproc=32 #n pbepbe/6-31g(d) units(au) fchk nosymm freq END

.71 %mem=100gb %nproc=32 #n pbepbe/6-31g(d) fchk nosymm

0 1

U	1			
п	_	3 271676	1 110003	_0 051005
п		5.2/10/0	1.110003	-0.951905
С	-	0.322968	2.021415	1.471744
ц	_	0 3/87/0	2 875251	0 774225
п		0.540/40	2.0/JZJ1	0.114225
Η		0.173998	2.432929	2.374437
C		1 135/50	-0 199096	_0 193785
C		1.133433	0.10000	0.100/00
Η		1.943191	0.216363	-0.763537
C		0 9/501/	0 075704	1 001455
C		0.045914	0.9/3/04	1.001455
Η		1.680935	1.683378	0.864015
TT		1 007425	0 4 5 4 1 2 0	1 022004
н		1.09/435	0.454158	1.933804
С	-	3.191105	1.857549	1.134783
		2 241244	2 0 0 4 0 6 2	0 (74200
н	-	3.241244	2.864063	0.6/4300
С	-	3,905120	-0.670749	0.134262
č		1 000521	1 011001	1 001000
C	-	1.823561	1.811901	1.981906
Н	-	1 969237	2 688220	2 648180
		1.000207	2.000220	2.010100
Η	-	1.864459	0.949052	2.672124
C	_	0 757292	-2 152069	-1 481311
C		0.131232	2.132003	1.401311
Η	-	0.409690	-2.870379	-2.251348
ц	_	0 855779	-2 756030	-0 562312
11		0.033773	2.150055	0.502512
С		0.480345	-1.139235	-1.386339
ц		0 118260	-0 536160	-2 206227
r1		0.410200	-0.030108	-2.300227
С	-	3.780814	0.894260	-0.003802
U		1 801751	1 202120	_0 1/2002
п	-	4.004/31	T.7A2T28	-0.142092
С	-	3.534061	-1.623660	-1.085739
C		0 011056	_1 710001	_1 070004
C	-	2.211330	-1./18891	-1.9/9964
Η	-	4.972005	-0.908574	0.316018
		2 200000	1 005001	1 040707
Н	-	3.390969	-1.025221	1.042/8/
Н	-	3.717852	-2.644553	-0.696243
			2.011000	0.090219
Н	-	4.324730	-1.465982	-1.845694
Н	-	3 954092	1 877868	1 937263
			1.077000	1.997209
Н		1.634081	-0.938653	0.388455
ц	_	2 125/78	-0 801590	-2 589095
11		2.123470	0.001000	2.505055
Η	-	2.502465	-2.496813	-2.712813
п		1 352001	_1 003074	-1 563320
п		1.552004	-1.0039/4	-1.303320
Η	-	1.295436	0.610624	-1.847785
C		4 110054	0 404050	0 0/0110
C		4.110034	0.404959	-0.042110
Η		4.481041	0.007747	-1.807829
		4 001001	0 00 00 7 0	0 00 00 70
Н		4.991801	0.8963/9	-0.384972
С		3.330068	-0.780359	1.520094
		4 104500	0 001175	0 100650
Н		4.194532	-0.9811/5	2.182650
С		3.841673	-0.896570	0.031851
		0.012070		0.001001
Η		3.218087	-1.600843	-0.543567
н		4 838301	-1 380199	0 059268
11		4.050501	1.300133	0.055200
С		1.859777	1.620827	-2.107880
ц		1 859629	0 715750	-2 741360
11		1.055025	0.113133	2.741300
С	-	1.159874	-0.154959	0.235849
C		0 405990	1 934858	-1 516147
0			1.004000	1.01014/
Η		0.573630	2.765731	-0.809972
ц		0 115127	2 112000	-2 270500
r1	-	0.11010/	2.413090	-2.3/0322
С		3.175376	1.649212	-1.203510
LT.		3 005101	2 200221	_1 7500/1
Н		3.0004U1	2.298221	-1./22861
Η		2.958303	2.215814	-0.281206
~		0 105005	1 711070	0 1 4 7 0 7 1
С		∠.182885	-1./119//0	2.14/8/1
Н		2.642997	-2.712490	2,275408
~		0.000070	1 004001	2.2.0100
С	-	0.839379	1.034931	-0.943253
н	_	1 517162	1 856767	-0 664739
11	_	J-/102	1.000/0/	0.004/39
С	-	0.553385	-1.122955	1.447428
C		0 715301	-2 0810/0	1 612111
C		0.110091	-2.001942	1.010441
Η	-	1.719629	-0.856927	-0.341083
L1		1 010406	0 200047	0 000001
Н	-	1.919406	0.30984/	0.830031
Η	-	0.609697	-0.543757	2.384722
τŦ		1 300500	_1 020005	1 606064
Н	-	1.398300	-1.030095	1.325354
Η		2.002380	2.454785	-2.823574
		2 071041	0 070100	1 71 0000
Н		3.0/1941	0.2/0108	T./T0808
Н		0.826056	-2.712192	0.713492
		0 07/011	0 700400	0 401000
Н		0.376011	-2./88428	2.401322
Н		2.065144	-1.323377	3.178323
÷ ÷				

.73

%mem=100gb
%nproc=32
#n pbepbe/6-31g(d) fchk nosymm

0	1			
н	-	4.227574	-1.746253	-0.765670
С		1.515051	-0.969388	-0.874869
Н		2.484288	-0.696399	-1.327387
Н		1.176954	-1.861181	-1.440679
С		0.881224	1.645794	-0.826361
Н		-0.894457	-3.245869	-0.393947
С		0.509909	0.167447	-1.161563
Н		0.318526	0.135917	-2.251743
Н		-0.463013	-0.078591	-0.692173
С		2.856412	-2.441826	0.766416
Н		2.584689	-3.359363	0.207876
С		4.870757	-0.808855	1,106023
С		1.726827	-1.402810	0.586274
Н		0.784238	-1.835328	0.976053
н		1 928958	-0 526179	1 227833
C		3 440529	1 647656	-0 203923
н		3 744801	2 539769	0.205525
н		3 009341	0 961932	0 539388
C		2 336772	2 026724	-1 227168
н		2 559740	1 557360	-2 205941
C		1 263826	-1 99//58	0 310549
с ц		4.203020	-2 965962	0.310349
С		5 570005	-2.000002	0.378939
C		1 602571	0.200405	-0 795124
с ц		5 507030	_1 105500	1 9/30/6
п		1 000001	-1.193309	1 712540
п		4.003204	1 026762	0 026717
п		6 441200	1.020/02	0.930717
н		0.441208	-0.190609	-0.269/19
н		2.898679	-2.736990	1 401200
н		4 270001	2.248//3	-1.491288
н		4.3/8901	0.242362	-1.362268
H		5.304155	1./21882	-1.339954
H		2.366960	3.116909	-1.411695
Н		-1.94/958	-4.228841	-1.440/49
C		-5.298001	-0.231547	-0.503854
Н		-5.552483	-0.529732	-1.539998
Н		-6.255565	0.052754	-0.024628
С		-4.100802	1.639116	0.817976
Н		-5.065998	1.820824	1.331067
С		-4.38/441	1.010426	-0.555127
Η		-3.436906	0.753454	-1.060306
Η		-4.870956	1.772544	-1.197985
С		-3.474875	-2.067746	-0.425422
Η		-2.652457	-1.325159	-0.443248
С		0.544124	2.105753	0.613874
С		-2.978042	-3.340882	0.275272
Η		-2.752435	-3.108853	1.334684
Η		-3.796714	-4.086795	0.296281
С		-4.722315	-1.457421	0.230879
Η		-5.510026	-2.234497	0.283606
Η		-4.491939	-1.194929	1.282038
С		-3.324627	2.968767	0.756091
Η		-3.906456	3.689806	0.148606
С		-1.741481	-3.956078	-0.390175
Η		-1.409707	-4.869088	0.133721
С		-0.937649	2.022061	1.029535
С		-1.894115	2.883983	0.189580
Η		0.873613	3.160222	0.715744
Н		1.139304	1.535110	1.349800
Η		-1.271654	0.967094	1.017008
Η		-1.013715	2.342337	2.087836
Н		-3.697038	-2.298286	-1.487368
Н		-3.553692	0.920183	1.457001
Н		-1.929201	2.508809	-0.850696
Н		-1.482094	3.910667	0.124422
Н		-3.274645	3.398708	1.775967

.75 %mem=100gb %nproc=32 #n pbepbe/6-31g(d) fchk nosymm

0 1			
Н	-3.124137	1.212680	-0.699511
С	-0.399602	1.661775	1.910316
Н	-0.430574	2.631471	1.387591
Н	0.086034	1.906125	2.879285
С	1.049612	-0.097572	-0.150635
Н	1.856324	0.470791	-0.581637
С	0.744059	0.724838	1.274688
Н	1.615488	1.402692	1.355908
Н	0.939449	-0.018461	2.063310
С	-3.219540	1.511766	1.486197
Н	-3.278176	2.596178	1.263985
С	-3.928249	-0.704565	-0.062713
С	-1.884851	1.327244	2.350468
Н	-2.069000	2.057591	3.165951
Н	-1.906147	0.350693	2.872151
С	-0.748019	-1.674747	-1.966203
H	-0.377358	-2.098867	-2.921449
H	-0.827008	-2.547660	-1.292288
С	0.454369	-0.712909	-1.553920
Н	0.396177	0.106517	-2.285339
С	-3.726573	0.837258	0.135994
H	-4.715917	1.313810	-0.006631
С	-3.525175	-1.346620	-1.453629
С	-2.207281	-1.146888	-2.323154
H	-5.009836	-0.927016	0.026466
H	-3.465789	-1.277058	0.757013
H	-3.655843	-2.438812	-1.319069
H	-4.323189	-1.053198	-2.163/50
H	-4.01/454	1.338/25	2.235364
н	1.5/1013	-0.944038	0.230032
н	-2.140032	-0.092584	-2.042970
н	-2.4/0/33	-1.090301	-3.249347
н	1 201050	-1.292181	-1.003//9
С	1 096301	0 633668	-0.738659
ц	4.090301	0.033000	-0.75639
и Ц	1 978817	0 975440	-0 161964
C	3 338903	-1 094401	1 238151
н	4 239032	-1 363902	1 825853
C	3.798877	-0.841225	-0.244613
H	3.116702	-1.335483	-0.955083
Н	4.766600	-1.360829	-0.391224
С	1.878744	2.113034	-1.681638
Н	1.842487	1.321108	-2.449688
С	-1.175769	-0.528836	0.414809
С	0.439201	2.386987	-1.047808
Н	0.633974	2.975540	-0.134183
Н	-0.020608	3.120407	-1.746615
С	3.150714	1.911851	-0.739977
Н	3.856203	2.718527	-1.019805
Н	2.870107	2.154947	0.300011
С	2.297740	-2.239311	1.621955
H	2.823922	-3.200037	1.459159
C	-0.823549	1.457864	-0.777595
H	-1.529383	2.095879	-0.236375
C	-0.481544	-1.68/429	1.265176
C II	U.838/83 1 700400	-2.544552	L.U35/80
H	-1./UZ493	-0.94/036	-U.41133/
п u	-1.000/90 -0 /0/007	-0.0042/4	1.U/9/40 2 227007
ц Ц	-1 286007	-1.3/9013	2.32/00/
ц 11	2 086640	2.134003	-2 25/336
H	2 998105	-0 145228	2.234330
H	0.928559	-2.807966	-0.032673
H	0.603459	-3.506919	1.537011
H	2.188865	-2.156951	2.721410
**			