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Figure S1.  Scheme of graph representation used as input of the Crystal Graph Neural Network. 

a) Shows the radius threshold criteria used to determine whether or not two atoms share an 
edge, b) shows the radius threshold criteria applying periodic boundary conditions, c) shows the 
Voronoi polygons resulting from a Voronoi Tessellation algorithm applied to atoms that rely in 2D 

space, and d) shows the Voronoi polygons resulting from a Voronoi Tessellation algorithm 
applied to atoms that rely in 3D space. 

 
 
 



 
Fig. S2. Illustrative exemplars of Voronoi Polyhedrons for various atomic arrangements of 

carbide atoms around a molybdenum atom. The pictures show how the relative disposition of 
atoms makes the boundary of the central Mo polyhedron change. 

 

 
Fig. S3. Scheme of the inner cross validation approach for data splitting applied in this study.  

 
 

  



Generating C/vacancy configurations in Mo2C supercells for database creation  
 

To diversify the atom arrangements, our approach started with a 111 cubic cell of MoC, using a 

1:1 stoichiometry as a baseline to construct 222 supercells. We reduced half of the carbon atoms 
to achieve a 2:1 stoichiometry (2Mo:1C). We harnessed the method of constructing special quasi-
random structures (SQS)1 effectively mimicking the local atomic arrangements commonly seen in 
random solid solutions. This method is instrumental in depicting the inherent disorder characteristic 
of these materials accurately. The potential configuration count is determined as follows: 
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Where: 

• n represents the total number of possible positions for carbon atoms within the supercell 
or unit cell of the crystal structure. 

• k denotes the number of positions that are actually occupied by carbon atoms within the 
supercell or unit cell. 

 
Crystal Graph 
 
The supercells were converted into graphs, where nodes represent the atoms and edges represent 
atom-to-atom interactions. To identify the type of atom, each node has a vector of dimensionality 
2 containing the one-hot-encoded information of atom identity (Mo or C). 
For the edges, Voronoi Polyhedrons2,3 were built around each atom within a cell. These 
3D figures encapsulate the volume in space that is closer to the central point compared to 
any other point in the system. For a better understanding of this concept, Fig. S1 shows 
a Voronoi polygon for a series of atoms that lie in the 2D space and a Voronoi Polyhedron 
around a central point for a system of atoms in the 3D space.  

The Voronoi Polyhedron is useful in deriving information on how the central point interacts 
with the other points in the system. We used atoms as central points, so that each atom within the 
supercell has an associated polyhedron. As shown in Fig. S1, each polyhedron is delimited by 
neighbouring polyhedrons, and such boundaries provide further information about the interaction 
between two points, or atoms in our case.2 Particularly, we have quantified the interaction of atoms 
by calculating the solid angle. This parameter is a measurement of the amount of the field of view 
that is taken by an object being viewed from a specific point. This measure was used to add edge 
features to the crystal structures, as previously performed by Gu et al. to represent perovskites.4 

By calculating the solid angle for a central atom and the polyhedron of a neighbouring atom, 
we can estimate the extent to which an atom is perturbed by the presence of that neighbouring 
atom, the topology of the crystal, and the relative position of atoms around a central atom. These 
factors are key to explaining the energetics of an atomic system (Fig. S2).2–4 We expanded the 
information on the solid angle using a Gaussian Expansion method, which maps a variable x in R1 
to Rn, where n is a hyperparameter. These distributions follow Equation 4, where the difference 
between them is given by the μ value. 

 

𝐺(Ω, 𝜇, 𝜎)  = 𝑒𝑥𝑝 (
(Ω − 𝜇)2

𝜎2
) 

We created the μ values from the interval [0, 3.5], with a step of 0.5; σ was set to 0.5 
(because the series of numbers increases by this magnitude), and Ω is the solid angle. Due to the 
number of μ samples used, our expansion method takes Ω in R1 and maps it to R8. 
Therefore, each edge was given features of the expanded solid angle with a length of eight. 

 

 
Model Training 
 
Adam optimizer was used and the root mean squared error was adopted as the loss function. For 
each epoch, the loss of the validation set was supervised for two reasons: learning rate 
adjustment and early stopping. If no improvement in the validation loss were achieved for 7 



subsequent epochs, the learning rate was multiplied by a factor of 0.7. The learning rate was 
initially set to 0.01, and the minimum learning rate allowed was 10-8. If no improvement occurred 
in the validation set for 30 epochs, training was stopped. For the learning process, the training 
set was fed to the model in batches of 40 graphs, the loss and gradients were calculated for each 
batch, and weights and biases were updated after each batch. For each epoch, all training set 
was fed in batches, and an epoch was finalised once all batches had gone through the 
backpropagation process.  

To assess robustness and generalisation of the models, we applied an inner cross-validation 
strategy (see Fig. S3). This splitting strategy consists in dividing the dataset into k folds and 
utilise each fold as test set, but also in each test set, each of the remaining k-1 folds is used as a 
validation set once, while the remaining k-2 folds are used as the training set. This way, for each 
test fold, a total of k-1 different training processes are performed, each with different training and 
validation sets. When all possible combinations of validation and training sets are achieved, then 
the test set is put back into the training set, and another set is taken out to be used as a test set. 
This process is repeated until all folds have been used as a test set. By doing this, it is possible 
to analyse the model generalisability when training on different datapoints. For our case, since 
we have created 5 folds, there would be a total of 5 test sets, while each test set will be 
evaluated after 4 different training processes using different validation and training sets, leading 
to a total of 20 different training processes. 

 
Crystal Graph Explainer 
 
The Crystal Graph Explainer is a novel tool to explain the relation between ensembles of atoms in 
a crystal structure and their contribution to the prediction of the property of the material by a Graph 
Neural Network. The nature of this tool goes further from former strategies, as they assumed no 
defects in the crystal structure and quantified the impact of having a certain atom type in a certain 
position. For the Crystal Graph Explainer, such assumption is not taken and therefore allows the 
quantification of the impact of having certain atom types in given relative arrangements to the 
overall properties of the structure. 

The crystal graph explainer works by masking atoms from the graph structure before the 
pooling operation occurs. As pooling operation is useful to summarize the information contained 
on all the nodes, then this operation must take more information from those nodes that the GNN 
found to correlate the most with the target property. If these nodes are masked (hidden), then 
pooling cannot take information from such nodes, which leads to a different graph-level 
representation. As the graph representation is different, the prediction must be different. We define 
the attribution of the masked graph as the difference between the prediction of the complete graph 
and the masked graph. This way, the fragments that destabilize the crystal structure will have 
bigger attributions.  

While this approach has been successfully applied to organic molecules, some issues may 
arise in the case of crystal strictures, including: 

1. A fragment that needs to be explained may occur multiple times for the same central atom. 
For example, a molybdenum atom surrounded by 6 carbide atoms forming an octahedron 
is the super-position of three C-Mo-C fragments forming a 180° angle in the three different 
axes (x, y, and z) (Fig. S4a). When masking out all the matching fragments, the resulting 
structure would be equivalent to another structure. To fix that, the algorithm won't mask an 
atomic ensemble contained within a higher order ensemble. Therefore, only those C-Mo-
C fragments forming a 180° angle with no other carbide atom around the central Mo will 
be masked. 

2. A fragment that needs to be explained can occur many times within one single unit-cell in 
different sets of atoms (Fig. S4b). This will lead to an unfair comparison between attribution 
scores from different cells with different amounts of fragments removed. To fix this, we 
normalize the attribution value of the fragments by dividing it by the number of matching 
substructures that were removed from the cell. 

3. A fragment that needs to be explained may happen more than once within the same unit 
cell and the matching fragments may overlap between them (Fig. S4c). In such case, the 
algorithm was coded so that it cannot remove twice the same atom. This way, if a central 
Mo originally matched the desired structure, but one of its carbons is removed because it 



also matched the fragment but with another central Mo, then the first Mo will not be 
removed as the removed carbon causes such fragment to not be there anymore. 

4. A fragment that needs to be explained does not occur at all in the unit-cell or supercell (Fig. 
S4d). In such cases, the algorithm does not take that observation into the analysis since it 
will generate an attribution score of 0 because of absence of the fragment and not because 
it is not important. 

 

 
Fig. S4. Possible masking problems in crystal structure graphs. 

  



Performance of the models on the 2x2x2 cells 

 

 
Fig. S5. Summary of results obtained by Crystal Graph Neural Network and Interatomic Potential 
approaches on the Mo2C dataset. The reported values are shown for each test fold separately, 
using the mean of the metrics for the value in the bar and the standard deviation as error bars. a) 
Shows the mean metrics obtained for each test fold and standard deviation as error bars. b) Shows 
the error distribution of each test set. C) Shows the learning curve of the methods for different 
metrics. 

 

 
 

 
Fig. S6. Summary of results obtained by Crystal Graph Neural Network and Interatomic Potential 
approaches on the Ti2C dataset. The reported values are shown for each test fold separately, using 
the mean of the metrics for the value in the bar and the standard deviation as error bars. a) Shows 
the mean metrics obtained for each test fold and standard deviation as error bars. b) Shows the 
error distribution of each test set. 
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