Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Design of orthogonally jointed 2D transition metal dichalcogenide heterojunctions for enhanced Photoelectrochemical water reduction

Chih-hung Wu,^a Keng-Hung Chang,^a Yu-Hao Tu,^b Chen-Hao Yeh,^c Heng-Jui Liu*^a

^a Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402202, Taiwan

^b College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan

^c Department of Materials Science and Engineering, Feng Chia University, Taichung 407012, Taiwan

Corresponding Author

*e-mail: hengjui0109@dragon.nchu.edu.tw

 Table S1 Surface elemental compositions for all samples from XPS survey scan

Sample	Mo (at%)	W (at%)	S (at%)	O (at%)
MoS ₂ /p-Si	37.6	_	52.7	9.7
WS ₂ /p-Si	_	34.0	41.8	24.2
orth-MoS ₂ /WS ₂ /p-Si	36.9	3.9	49.2	10.1
orth-WS ₂ /MoS ₂ /p-Si	3.6	36.2	44.1	16.1

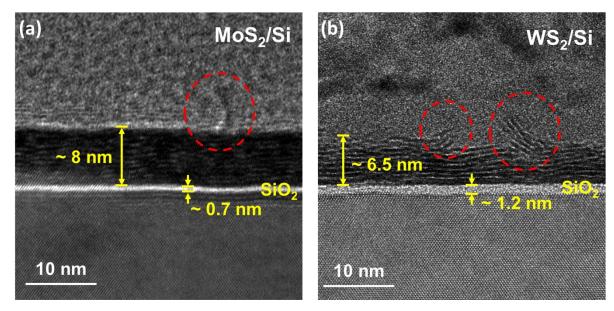
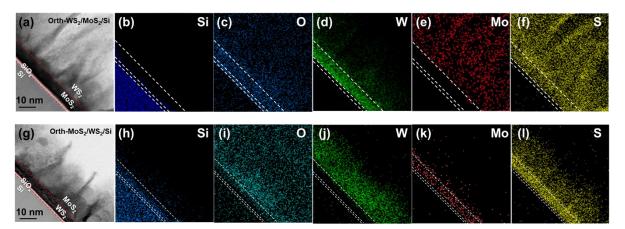
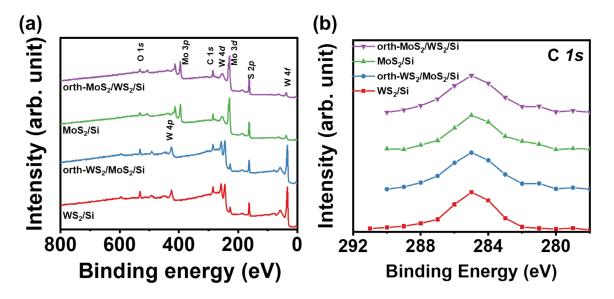
Table S2 Fitting result of Nyquist plots for all samples

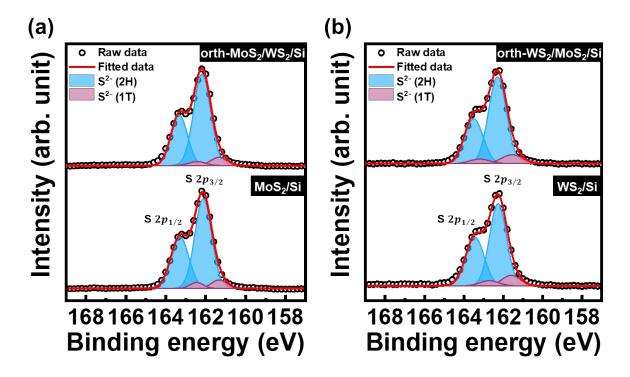
Sample	Rs (Ω)	$R_{ct1}(\Omega)$	$R_{ct2}(\Omega)$
MoS ₂ /p-Si	190	2634	
WS_2/p -Si	265.8	1937	
orth-MoS ₂ /WS ₂ /p-Si	124.2	263.3	745.9
orth-WS ₂ /MoS ₂ /p-Si	134.8	348.6	473.3

 $\label{eq:table S3} \textbf{ Calculated adsorption energy (in eV) of a hydrogen atom on all potential active sites of three different WS_2/MoS_2 heterostructures.}$

Vertically joined WS ₂ /MoS ₂		Laterally stacking WS ₂ /MoS ₂		Horizontally joined WS ₂ /MoS ₂	
Site	E _{ads} (eV)	Site	E _{ads} (eV)	Site	E _{ads} (eV)
H1	-4.32	H1	-1.52	H1	-1.52
H2	-2.47	Н2	-1.50	Н2	-1.52
Н3	-2.73	T1	-1.28	Н3	-1.58
H4	-2.89			T1	-1.54
Н5	-3.29			Т2	-1.50
Н6	-3.29			Т3	-1.75
T1	-4.32				
T2	-2.73				
Т3	-3.17				
T4	-2.32				
T5	-2.45				

	Vertically joined WS ₂ /MoS ₂	Laterally stacking WS ₂ /MoS ₂	Horizontally joined WS ₂ /MoS ₂
grid	E _{ads} (eV)	E _{ads} (eV)	E _{ads} (eV)
3 × 3 × 1	-4.321	-1.520	-1.755
$4 \times 4 \times 1$	-4.322	-1.521	-1.754
$5 \times 5 \times 1$	-4.322	-1.521	-1.754
$6 \times 6 \times 1$	-4.322	-1.520	-1.754
$7 \times 7 \times 1$	-4.322	-1.521	-1.754


Fig. S1 Cross-sectional HR-TEM images of single-component (a) MoS_2/p -Si and (b) WS_2/p -Si heterostructures. The images reveal that MoS_2 and WS_2 initially follow a layer-by-layer growth mode, maintaining a horizontally stacking structure below a critical thickness of \sim 8 nm and \sim 6.5 nm, respectively. However, as the growth approaches these critical thicknesses, slight vertical protrusions also emerge, serving as seeds for the subsequent formation of vertically standing TMD nanosheets. Note that an ultrathin SiO_2 layer of below 1.2 nm is inevitably formed during the growth process of these TMD layers.

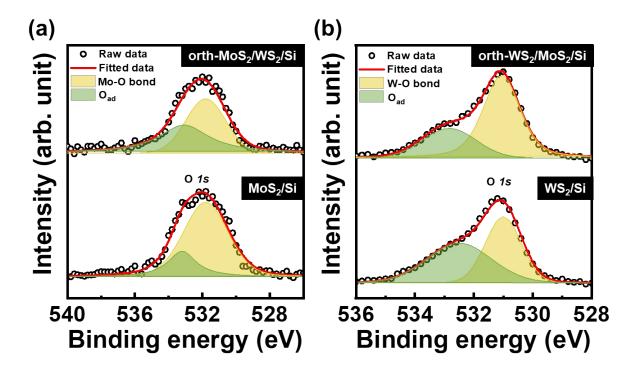

Fig. S2. (a–f) Cross-sectional bright-field (BF) HR-TEM image and corresponding EDS elemental maps of Si, O, W, Mo, and S for the orth-WS₂/MoS₂/Si heterostructure. (g–l) Cross-sectional BF HR-TEM image and EDS elemental maps of Si, O, W, Mo, and S for the orth-MoS₂/WS₂/Si heterostructure. The red and white dashed lines are aligned at identical relative positions across each panel to guide the eye in identifying the layer constituents. An ultrathin SiO_x interlayer can be observed between the first TMD layer and the Si substrate, appearing as the brightest contrast in the BF images, with overlapping Si and O signals confirmed in the corresponding EDS maps.

Fig. S3. (a) the survey scans and (b) the C 1s spectra for all samples. In the C 1 spectra, all curves show a characteristic peak at 284.8 eV from adventitious carbon, indicating similar levels of surface contamination across all samples.

Fig. S4. (a) S 2p XPS spectra for the orth-MoS₂/WS₂/p-Si heterostructure and single-component MoS₂/p-Si heterostructure. (b) S 2p XPS spectra for the orth-WS₂/MoS₂/p-Si heterostructure and single-component WS₂/p-Si heterostructure.

Fig. S5. (a) O 1s XPS spectra for the orth-MoS₂/WS₂/p-Si heterostructure and single-component MoS₂/p-Si heterostructure. (b) O 1s XPS spectra for the orth-WS₂/MoS₂/p-Si heterostructure and single-component WS₂/p-Si heterostructure.

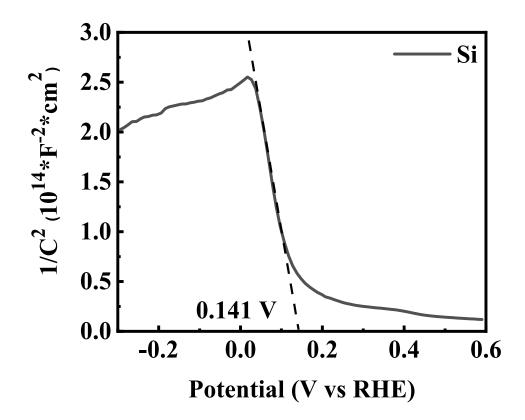
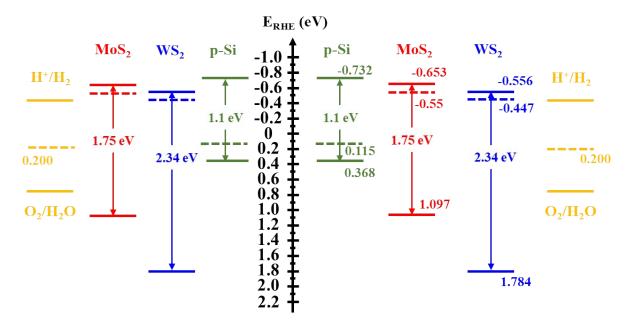



Fig. S6 Mott-Schottky plot of blank p-Si substrate.

MoWS₂/WS₂/p-Si

WS₂/MoS₂/p-Si

Fig. S7 Band alignment diagrams relative to E_{RHE} of orth-WS₂/MoS₂/p-Si (right) and orth-MoS₂/WS₂/p-Si (left) heterostructures are constructed according to the analysis of the Mott-Schottky plots of the single-component WS₂/p-Si and MoS₂/p-Si heterostructures. The details are unveiled below:

Analysis of Mott-Schottky measurement

1. The flat-band potential (^{V}fb) of the single-component WS₂/p-Si and MoS₂/p-Si heterostructures electrode is determined using the Mott-Schottky equation: 1

$$C^{-2} = \frac{2\left(V - V_{fb} - \frac{kT}{e}\right)}{e\varepsilon_0 \varepsilon_r N_D A^2}$$

Here, C is the space charge layer capacitance from Mott-Schottky measurements, e is the the elementary charge ($^{\sim}1.658 \times 10^{-24} \, \mathrm{F}$), $^{\varepsilon}0$ is the vacuum permittivity ($^{\sim}8.85 \times 10^{-14} \, \mathrm{F/cm}$), $^{\varepsilon}r$ is the relative permittivity (5.5 for MoS₂ and 5.9 for WS₂), V is the applied voltage, k is Boltzmann's constant ($^{\sim}8.62 \times 10^{-5} \, \mathrm{eV/K}$), N_D is the carrier density, T is room temperature (300 K), and A is the electrode-electrolyte contact area.

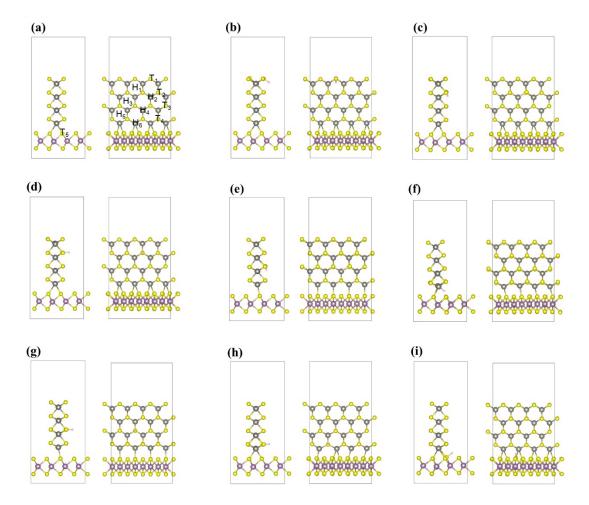
The flat-band potential is obtained from the x-intercept (V_0) of the linear region of the Mott-Schottky plot using:

$$V_0 = V_{fb} + \frac{kT}{e}$$

From this, V_{fb} values are -0.55 and -0.47 V vs. RHE for MoS₂ and WS₂, respectively (with V_0 at -0.524 V and -0.421 V).

2. The donor carrier concentration $(^{N}_{D})$ is derived from the slope of the Mott-Schottky plot (

 $^{2/e}\varepsilon_{0}\varepsilon_{r}N_{D}A^{2}$), yielding $^{\sim}5.654\times10^{13}cm^{4}/F^{2}$ for WS₂/p-Si and $^{\sim}1.267\times10^{13}cm^{4}/F^{2}$ for MoS₂/p-Si, corresponding to $^{N}_{D}$ values of $4.085\times10^{22}cm^{-3}$ and $1.956\times10^{23}cm^{-3}$, respectively.


3. The conduction band edge $(^{E}_{CB})$ is calculated as:

$$E_{CB} = V_{fb} + kT ln(\frac{N_D}{N_{CB}})$$

Where N_{CB} is the effective conduction band density of states:

$$N_{CB} = 2 \sqrt{(\frac{2\pi m_e^* kT}{h^2})^3}$$

where m_e as effective mass $(0.33^{m_0}$ for WS₂ and 0.39^{m_0} for MoS₂) and h is Planck's constant $(6.626 \times 10^{-34} J \cdot s)$. This gives ${}^{N}_{CB}$ values of 4.746×10^{24} cm⁻³ for WS₂ and 1.049×10^{25} cm⁻³ for MoS₂. Therefore, the conduction band edges are -0.653 V for WS₂ and -0.556 V for MoS₂ vs. RHF.

Fig. S8 (a) the possible adsorption sites in the orthogonally joined WS_2/MoS_2 heterostructure for the adsorbate, where the T and H represent the top and hollow sites; Optimized adsorption structures of a H atom on (b) H1 (= T1), (c) H2, (d) H3 (=T2), (e) H4, (f) H5 (=H6), (g) T3, (h) T4, and (i) T5 sites.

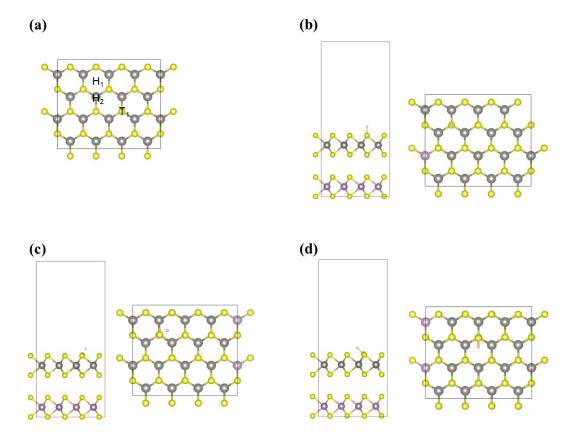
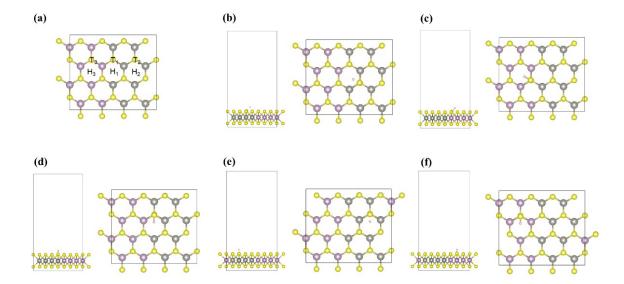
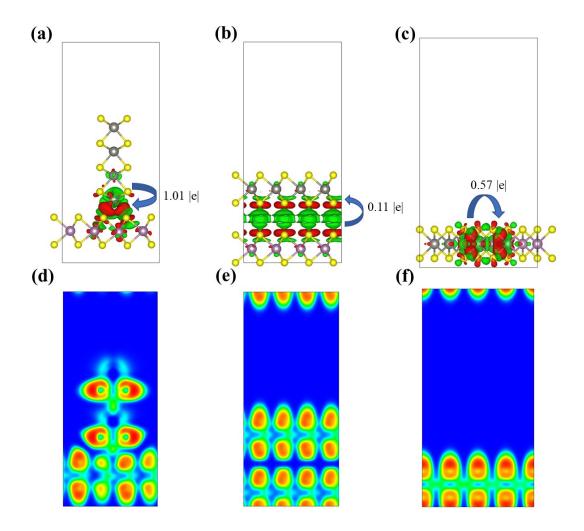




Fig. S9 (a) the possible adsorption sites in the vertically stacked WS_2/MoS_2 heterostructure for the adsorbate, where the T and H represent the top and hollow sites; Optimized adsorption structures of a H atom on (b) T1, (c) H1, and (d) H2 sites. We only considered the WS_2 side since the MoS_2 side is connected to the p-Si.

Fig. S10 (a) the possible adsorption sites in the in-plane interconnected WS_2/MoS_2 heterostructure for the adsorbate, where the T and H represent the top and hollow sites; Optimized adsorption structures of a H atom on (b) H1 (=H2), (c) H3, (d) T1, (e) T2, and (f) T3 sites.

Fig. S11 Calculated charge density difference (CDD) diagrams of (a) orthogonally jointed (isosurface level: 0.05 |e|/Bohr^3), (b) vertically stacked (isosurface level: $0.00005 \text{ |e|/Bohr}^3$), and (c) in-plane interconnected WS₂/MoS₂ (isosurface level: 0.005 |e|/Bohr^3) heterostructures. The Green and red represent the region of electron depletion and accumulation, respectively. Calculated electron localization function (ELF) diagrams of (d) orthogonally jointed, (e) vertically stacked, and (f) in-plane interconnected WS₂/MoS₂ heterostructures.

Reference:

(1) Li, F.-S.; Fang, Y.-W.; Wu, Y.-T.; Wu, S.-W.; Ho, S.-Z.; Chen, C.-Y.; Chiang, C.-Y.; Chen, Y.-C.; Liu, H.-J. Self-Enhancement of Water Electrolysis by Electrolyte-Poled Ferroelectric Catalyst. *ACS Nano* **2023**, *17* (16), 16274-16286. DOI: 10.1021/acsnano.3c06371.