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I Mapping

The original GOSH method relies on a random generation of clusters directly in the hyperspace that treats all
coordinates on an equal footing. To make the method compatible with the cluster generation and evolution capabilities
available in MAISE, we considered three different mapping protocols that expand structures given in the normal space
with d0 dimensions into an extra dimension. Here, we provide further details on the MAP2 scheme that produces
nearly uniform atomic distributions in all d0 + 1 dimensions starting with the d0-dimensional clusters.

In order to ensure uniformity, the normal coordinates for each atom must be rescaled with a mapping function
rd0

= f(roldd0
) to account for the increase in the dimensionality of the hypersphere. For simplicity, we first consider

unitless rd0
and roldd0

values to range between 0 and 1, and derive the analytic expression for f(roldd0
) in the special

d0 = 2 case (for convenience, we omit the d0 and ’old’ labels in the derivation). The atomic density uniform in the
normal space will remain uniform in d0 + 1 dimensions if the following integrals are proportional to each other and
the A constant is chosen to enforce f(1) = 1 if f(0) = 0.
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With the A = 2/3 choice, the mapping function becomes

f(r) =

√
1− (1− r2)

2/3

While we could not obtain analytical mapping functions for d0 ̸= 2, we found that the real uniform distributions of
points generated directly in the d-dimensional hyperspace (Fig. S1) can be approximated accurately (Fig. S2) with

f(roldd0
) =

√
1−

(
1−

(
roldd0

)2)p
The exponent values of p = 0.625 for d0 = 1 and p = 0.694 for d0 = 3 were determined numerically by minimizing

the root-mean-square deviation from the constant for histograms with 1-degree bins for angles formed by xd and x1

coordinates (see Fig. S2).
If the atomic distances to the origin in the normal space vary between 0 and R0, the mapping function becomes

rd0 = R̃0
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(S1)

The R̃0 scaling factor accounts for the reduction of the hypersphere radius to contain the same N atoms. It can
be estimated by redistributing N cubes packed inside the original normal space sphere of radius R0 as hypercubes
with an additional side inside a hypersphere of radius R̃0. The resulting R̃0/R0 ratios are 2√
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12 for d0 = 1, d0 = 2, and d0 = 3, respectively.
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II Behler-Parrinello symmetry functions

Behler–Parrinello symmetry functions map atomic environments into machine learning input of constant length:

G1
i =

∑
j ̸=i
all

e−η(Rij−Rs)
2

· fc(Rij) (1)

G2
i = 21−ζ

∑
j,k ̸=i
all

(1 + λ cos θijk)
ζe−η(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk) (2)

fc(Rij) =

0.5×
[
cos

(
πRij

Rc

)
+ 1

]
, for Rij ⩽ Rc,

0, for Rij > Rc.
(3)

They can be naturally extended into higher-dimensional spaces with N coordinates by calculating distances and
angles as:

R2
ij =

N∑
n=1

(xin − xjn)
2 (4)

θijk = arccos

(∑N
n=1(xjn − xin)(xkn − xin)

Rij ·Rik

)
(5)
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FIG. S1. Distribution of 107 random points generated directly in d = d0+1 dimensions. Each row of panels corresponds to d0
= 1, 2, or 3. The leftmost set shows histograms (in arbitrary units) of angles formed by the coordinates along the first and the
extra dimensions; the independence on the number of points per bin on the angle signifies the equivalency of these dimensions.
The middle left set displays point distributions in the (x1,xd) slice. The middle right set illustrates the location of points with

the extra coordinate xd and the normal distance radial vector rd0 =
√∑d0

n=1 x
2
n. The rightmost set shows histograms of angles

formed by xd and rd0 ; the decaying shape for d0 > 1 reflects the lower density of points near the origin of the d0-dimensional
spheres.



5

FIG. S2. Distribution of 107 random points generated in d0 dimensions and extended into an extra dimension by randomizing

xd within ±
√

R̃2
0 − r2d0 and using the mapping function for the normal coordinates introduced in Eqn. S1. The displayed

quantities are described in the caption of Fig. S1, and the only additional data shown in gray correspond to histograms of point
distributions without the mapping. The results demonstrate a close match between distributions of points generated directly
in d dimensions and points extended into the extra dimension with the proper mapping of the normal coordinates.
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FIG. S3. Performance comparison between TETRIS and BLOB generation of 500 clusters for each size of 37, 38, 39, 47, and
55 atoms. The x axis corresponds to the compression factor c in the BLOB scheme that adds spring forces toward the origin

for atoms outside radius Rcl/c, where Rcl is a target radius of the cluster estimated as 1.5
(∑

R3
i

) 1
3 and Ri are hard-core radii

of each species defined as 0.7 of the equilibrium bond length in their ground state bulk structures. The red diamonds show
the average ratios of CPU times used to create clusters in the two approaches, while the blue circles show the average ratios
of the resulting cluster volumes. The test illustrates that the TETRIS scheme creates significantly more compact clusters at a
modestly increased computational cost. The sharp increase in the CPU time required to create clusters compressed by a factor
of 1.35 reflects a large rate of failed attempts to satisfy the criteria for minimum interatomic distances even after 10 coordinate
adjustment iterations with the repulsive and spring potentials.
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FIG. S4. Histograms of energy differences (∆E) relative to the ground state for LJ38 and LJ55 clusters using two structure
generation protocols (BLOB and TETRIS) and two relaxation methods (3D and 4D). Panels (a) and (b) show results for BLOB-
initialized structures, while (c) and (d) correspond to TETRIS-initialized structures. Red and blue bars represent distributions
for 4D and 3D optimization, respectively. Insets magnify the low-energy regions, where configurations close to the ground state
appear.
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FIG. S5. Histograms of energy differences (∆E) relative to the ground state for Au38 and Au55 clusters using two structure
generation protocols (BLOB and TETRIS) and two relaxation methods (3D and 4D). Panels (a) and (b) show results for BLOB-
initialized structures, while (c) and (d) correspond to TETRIS-initialized structures. Red and blue bars represent distributions
for 4D and 3D optimization, respectively. Insets magnify the low-energy regions, where configurations close to the ground state
appear.
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