Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supplementary Information

Fig. S 1 Atomic type setting. All environment C atoms share the same parameters (C1), while
all symmetrically unique central atoms have their unique parameters (C2, C3, C4, C5,
N, Fe)
Fig. S 2 The distribution of CO ₂ position under different bias potentials :(a) Reaction
coordinate distribution in different windows for constP condition (7V). The reaction
coordinate is defined as the distance between the C in CO2 and electrode surface. (b)
The violin plot of the distance between C in CO ₂ and doped Fe atom in xy plane
Fig. S 3 Comparison of the probability distribution of the water orientation within inner water
layer (within 2.0~4.5 Å from the electrode surface). The θ stands for the angle between
the bisector of adsorbed water molecules and the surface normal. Two vertical dash lines
at 50° and 137° stand for most probable θ for positively and negatively charged
electrode, respectively, and the corresponding configuration are shown around the
vertical dash line, the black thick horizontal line stands for electrode surface
Table S 1 parameters in Fe-N-C electrode model
Table S 2 Adsorption energy of CO ₂ on electrode calculated by DFT and MD
Link 1 DMFF/dmff/admp/qeq.py at devel · deepmodeling/DMFF · GitHub

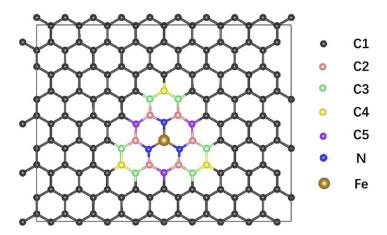


Fig. S 1 Atomic type setting. All environment C atoms share the same parameters (C1), while all symmetrically unique central atoms have their unique parameters (C2, C3, C4, C5, N, Fe)

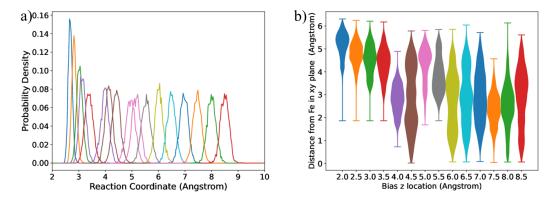


Fig. S 2 The distribution of CO_2 position under different bias potentials :(a) Reaction coordinate distribution in different windows for constP condition (7V). The reaction coordinate is defined as the distance between the C in CO_2 and electrode surface. (b) The violin plot of the distance between C in CO_2 and doped Fe atom in xy plane.

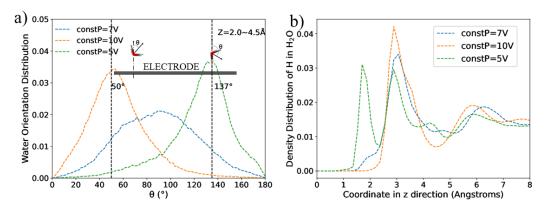


Fig. S 3 Comparison of water orientation under different bias potential: (a) The probability distribution of the water orientation within inner water layer (within 2.0~4.5 Å from the electrode surface). The θ stands for the angle between the bisector of adsorbed water molecules and the surface normal. Two vertical dash lines at 50° and 137° stand for most probable θ for positively and negatively charged electrode, respectively, and the corresponding configuration are shown around the vertical dash line, the black thick horizontal line stands for electrode surface. (b) probability density distribution of distance between oxygen atom in water and electrode surface.

Table S 1 parameters in Fe-N-C electrode model

	χ	J	η	ε	σ
	(kJ·mol ⁻¹ ·e ⁻¹)	(kJ·mol ⁻¹ ·e ⁻²)	(angstrom)	(kJ·mol⁻¹)	(nm)
C1	651.12496677	-4164.829436	0.10928332	0.69067923	0.29762701
C2	510.40392156	-6598.437796	0.07218767	0.69067923	0.29762701
С3	645.92171508	-23412.16716	0.02274385	0.69067923	0.29762701
C4	644.80942378	-4078.440621	0.11069275	0.69067923	0.29762701
C5	648.81564144	-4341.428043	0.10515459	0.69067923	0.29762701
N	1785.28391366	-5086.041613	0.06959997	0.09944425	0.31275400
Fe	479.4279537	-11302.57032	0.04676696	0.51379945	0.19529668

Table S 2 Adsorption energy of CO₂ on electrode calculated by DFT and classical forcefield

Adsorption Site	DFT	Classical Forcefield	
	(kJ·mol ⁻¹ ·)	$(kJ \cdot mol^{-1})$	
С	-8.37	-17.95	
Fe	-18.91	-26.64	

Both DFT and calculation under our classical forcefield consider only one CO₂ molecule and the electrode. The DFT setup uses identical computational details under vacuum conditions.

Link 1 DMFF/dmff/admp/qeq.py at devel · deepmodeling/DMFF · GitHub