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'H NMR: 1,4-bis[4(chloromethyl)benzamido] benzene
Solvent : DMSO
T=18°C
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Figure 1: H NMR spectra of 1,4-bis[4(chloromethyl)benzamido| benzene. The solvent
(DMSO-d6) peak is marked by an asterisk.
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41, 8841-8846
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"H NMR : Solution 6-Cl [10g/L]
Solvent : D,O + DMSO (1:1)
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Figure 2: 'H NMR spectra of a 6-Cl modified ionene (Mw = 78 kDa[I] ) in
DMSO-d6/D20 = 1/1 (v/v ) at 9g/L (solution state) . Solvent peaks: * DMSO-d6 and **
HOD. Spectrum is consistent with Misawa et al data [IJ.



110 x 10
"H NMR (benzene peaks) for 6-F at 16g/L
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Figure 3: Integrated intensity of the benzene peaks in the 'H NMR spectra of 6-F ionene
(16g/L, CGC) as a function of time, showing signal loss as gelation takes place. The
temperature for the first point is above room temperature (70°C), the remaining points

correspond to 18°C.
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Figure 4: 'H intensity signal attenuation versus gradients strength for peaks at 7-8 ppm
(aromatic protons) for (top) 6-Cl gel at 0.064mol/L (38g/L), for which a mono-exponential
fit works well, and for (bottom) 6-F gel at 0.072mol/L (40g/L), for which a
mono-exponential fit is only approximative. We note that a double exponential would
provide a better fit of the decay in Figure 4| (bottom). A double exponential analysis
reveals a majority of the chains (70%) moving with a diffusion coefficient Dy, = 3.3 x
10~ m? /s, while 30% of the chains move slower by a factor of cca 3.5 (Dgpp = 9.7 X
1072 m?/s). However, from all information we have on ionene-based hydrogels, we do not
see a reason to believe that exactly two families of wvisible chains are present in the gel and
bi-exponential fitting might be just a misleading approximation of an entire distribution of
diffusion coefficients. Thus, in the main text of the article we remain at the
mono-exponential fitting, which for the data in Figure [ yields a single average diffusion

coefficient of D = 2.2 x 107" m?/s for all the visible chains.
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Figure 5: Tonene chain diffusion coefficients and populations in 6-F gel at 0.072mol/L for
different diffusion times (Big Delta). The attenuation profiles of the signals around 7.8ppm
(Hp) and 7.5ppm (H, and H,.) have been fitted with the standard Stejskal and Tanner
equation using one diffusion coefficient (closed and open red circles) or two diffusion
coefficients (fast component: closed and open blue circles; slow component: closed and
open green circles). When the analysis was done with two diffusion coefficients, the
percentage of each contribution is presented with the same colour code (closed or open
squares). Unprimed data correspond to those obtained for the signal at 7.9ppm (H,) while
primed data correspond to those obtained for the signal at 7.5ppm (H, and H.). The
roughly constant values obtained for diffusion times spanning from 200 to 600ms indicate
that any occurrence of two diffusion coefficients cannot be explained by an intermediate

exchange between a fast and a slow population.
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Figure 6: 'F intensity signal attenuation versus gradient strength for fluoride counterions

at -122.0 ppm. Measurement done at 18°C.
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Figure 7: 'H intensity signal attenuation versus gradients strength for water proton peak

at 4.7ppm. Measurement done in D5O at 18°C.
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