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The Supplementary Information for the publication Examination of Inconsistencies in
the Physical Modeling of Vapor-Liquid Interfaces of Strongly Non-Ideal Mixtures

contains

« an overview of the available experimental VLE data and experimental surface tension

data for the studied systems, cf. Table [S1]
« a more detailed view of the MD density profiles for the mixture cyclohexane + ethanol,
« a discussion on adjusted cross-interaction influence parameters,
« a comparison of the predictions from the stabilized and reference fluid DGT algorithm,

» a comparison of experimental VLE data to EOS calculations for the remaining mixtures

not shown in the main body of this work,
o the p-T projections of the remaining mixtures not shown in the main body of this work,

« an example of the evaluation of the clustering of alcohol molecules within the molecular

dynamics simulations,

o a detailed view on the component density profiles obtained from DFT for the mixture

cyclohexane + ethanol,

e a comparison of the interfacial properties calculated from both equations of state in
combination with DGT and DFT as well as MD results for the mixture cyclohexane

+ 2-propanol,

« the component density profiles of the mixture cyclohexane + 2-propanol from different

equations of state in combination with DGT,

» the component density profiles of the mixtures not presented in the main body of this

work for the PCP-SAFT EOS in combination with DGT and DFT,



o a detailed description of the component density profiles as the type ’iv’ behavior

changes to a monotonic transition for the SCPA and Peng-Robinson EOS,

o the numerical values of the MD simulation results for the mixtures cyclohexane +

ethanol and cyclohexane + 2-propanol,

o and the numerical values of all component density profiles shown in the main body

and Supplementary Information of this work.



1 Literature Overview over Experimental Surface Ten-

sion and VLE Data

Table gives an overview of the literature experimental data on the VLE of the binary
systems (cyclohexane / methylcyclohexane + ethanol / 2-propanol / 1-propanol / 1-butanol)

in the temperature range 293.15 to 313.15 K.

Table S1: Literature overview of experimental VLE data of the binary systems (cyclohexane +
2-propanol / ethanol / 1-propanol / 1-butanol) and (methylcyclohexane + 2-propanol / ethanol /
1-propanol / 1-butanol) in the temperature range 293.15 to 313.15 K.

author T /K p / MPa

cyclohexane + ethanol

VLE data

Matteoli & Leporit 298.15

Cancellu et al.2 298.15

Coto et al3 298.15 0.008 - 0.019
Hwang € Robinson* 298.15 0.008 - 0.019
Iguchi® 298.15 0.015 - 0.019
Kato® 298.15 0.015 - 0.019
Lepori € Matteoli™ 298.15

Nagai € Ishii® 293.15 - 303.15 0.006 - 0.024
Pierotti® 299.85 - 300.25 0.009
Scatchard € Satkiewicz10 293.15 - 308.15 0.006 - 0.030
Washburn € Handorf™ 298.15 0.014 - 0.019

Surface tension data

Myers € Clevert2 303.15

cyclohexane + 2-propanol

VLE data




Gao et al13 298.15 - 303.15

Gupta et al14 298.15 - 308.15 0.006 - 0.026
Haase € Tillmann"> 298.15 0.006 - 0.016
Storonkin € Morachevskiil® 313.15 0.014 - 0.032
cyclohexane + 1-propanol

VLE data

Gupta et al14 298.15 - 308.15 0.003 - 0.022
Hwang & Robinson* 298.15 0.003 - 0.014
Iguchi® 298.15 0.009 - 0.014
Smirnova & Kurtynina®t 298.15 0.003 - 0.014
Surface tension data

Yang € Bael® 308.15

cyclohexane + 1-butanol

VLE data

Belabbaci et al.'? 313.15 0.003 - 0.025
Belabbaci et al.?V 313.15 0.018
Bhardwaj et al.21 298.15 0.002 - 0.021
Huo et al22 303.39 - 308.56 0.015 - 0.022
Smirnova & Kurtyninal® 298.15 - 308.15 0.002 - 0.021
Surface tension data

Trieschmann® 295.15
methylcyclohexane 4 ethanol

VLE data

Ishii?4 293.15 - 303.15 0.007 - 0.016
Kretschmer € Wiebe?> 308.15  0.016 - 0.02




2 Detailed View of the MD Density Profiles for the
Mixture Cyclohexane 4+ Ethanol

As outlined in the main body of this work, the MD density profile results show a peculiar
topology, namely a (minor) enrichment of cyclohexane, followed by a (minor) depletion of
cyclohexane and a (minor) enrichment of the associating component. These regions are
highlighted in in Figure As the position of the enrichment and depletion depends on

the liquid mole fraction, the regions are only exemplary highlighted in Figure for one

composition.
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Figure S1: Density profiles of the binary mixture of cyclohexane + ethanol with the liquid
mole fraction of cyclohexane x¢,. = 0.191 mol mol ™! at T = 303.15 K. The dotted lines indi-
cate ethanol and the solid line cyclohexane. The inset shows the interfacial region in more de-
tail. Shown are MD results. The shaded regions highlight the described enrichment/depletion
behavior: (Minor) enrichment of cyclohexane (dark gray) followed by a (minor) depletion of cy-
clohexane and a (minor) enrichment of ethanol (light gray).



3 Influence of Cross-Interaction Influence Parameters

Bi; on DGT Results

Similar 'type iv’ behavior in DGT predictions have been reported by other groups. Liang
et al.?% analyzed the mathematical origin of such behavior and identified potential pitfalls
associated with the use of the geometric-mean combining rule for the influence parameter.
They demonstrated that a numerically robust application of the geometric-mean DGT re-
quires the so-called path function, defined as the sum of the component densities multiplied
by the square root of their respective influence parameters, to vary monotonically along the
solution profile, which is the case for the studied mixtures within this work. However, sharp
density changes, even if the path function appears monotonic, are regarded as a warning
sign, since one of the fundamental assumptions of DGT is that density gradients remain
small compared to the inverse of the intermolecular distance.?8 Mairhofer € Gross?? inves-
tigated the same mixture (hexane + ethanol) using both DFT and DGT and observed a
comparable interfacial topology for the DGT results when using geometric mixing rule for
the cross-interaction DGT influence parameter, and demonstrated that the steep gradients
in the DGT profiles could be largely mitigated by introducing an adjustable cross-influence
parameter (/3;;), which substantially altered the shape of the underlying density profiles.
In the mixtures studied here (cf. Fig. for the mixture of cyclohexane + ethanol), the
use of an adjustable parameter 3;; — while slightly mitigating steep gradients — did not
change the overall topology of the interfacial density profiles. These findings highlight that
the occurrence of steep gradients is not unique to the present systems but is a general is-
sue of the underlying approximation of DGT when applied to strongly non-ideal mixtures.
The underlying square-gradient approximation may therefore no longer be valid, potentially

necessitating higher-order corrections or non-local theories.
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Figure S2: Density profiles of the binary mixture of cyclohexane 4+ ethanol with the liquid mole
fraction of cyclohexane z.. . = 0.2 mol mol! at 7' = 303.15 K. Results from the PCP-SAFT EOS

cyc
for the sDGT approach. Color coded are different values of 3;;: the geometric mixing rule is

shown in green ((1 - B;;) = 1), adopting the bulk binary interaction parameter &;;, i.e. (1-3;;)
= ¢;; = 0.9735 is shown in orange, (1-3;;) = 0.95 and 0.9 are shown in red, and (1-8;;) = 1.05 is
shown in blue.

4 Comparison of Stabilized DGT and Reference Fluid

DGT Algorithm

Fig.[S3|compares the density profiles as calculated using the PCP-SAFT EOS in combination
with the stabilized DGT (sDGT) algorithm proposed by Mu et al.?® (left) and the reference
fluid DGT (RFDGT) approach 22 (right). The results are exemplary shown for the mixture
cyclohexane + ethanol with a liquid mole fraction of cyclohexane of z/ . = 0.7 mol mol™
and a temperature of 7' = 303.15 K. Fig. [S3Heft shows the iterative convergence using the
sDGT approach for the iterations 1 (initialized density profiles), 36, 71, 106, and 141 (being
the final converged state). The first iteration shown after the initial guess (green) shows
the same qualitative behavior as the final density profile, i.e. there is a significant depletion
of cyclohexane at the interface after an initial maximum on the gas side of the interface.

The third set of profiles (blue-green) shows only small deviations to the final set of density

profiles at around z = 1 A, whereas the fourth iteration is nearly identical to the final density



profiles and is therefore concealed by the final iteration (purple) in Fig. left. The final
iteration of the sDGT approach converged to the density profiles of the RFDGT approach

(right). Thus the results from the two DGT algorithms are consistent.
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Figure S3: Density profiles of the binary mixture of cyclohexane 4 ethanol with the liquid mole
fraction of cyclohexane acgyc = 0.7 mol mol™ at 7" = 303.15 K. Results from the PCP-SAFT EOS
for the sDGT approach (left) and RFDGT approach (right). The dotted lines indicate ethanol
and the solid line cyclohexane. For the sDGT approach, results from 5 iterations are shown color
coded (yellow: initial guessed density profiles) to purple (final converged density profiles).



5 Comparison of Experimental VLE Data with EOS

Results

Figures compare PCP-SAFT results (with adjusted binary interaction parameters) to
experimental VLE data in the specified temperature range. The fitted binary interaction

parameters Emecye,; Of the methylcyclohexane mixtures are listed in Table

Table S2: PCP-SAFT binary interaction parameter {mecyc,j of methylcyclohexane with different
alcohol components j.

component j  &mecye,j
ethanol 0.9707
2-propanol 0.9771
1-propanol 0.9733
1-butanol 0.9765

cyclohexane + 1-propanol cyclohexane + 1-butanol
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Figure S4: p - = phase diagrams of the binary mixtures cyclohexane + 1-propanol (left) and
cyclohexane + 1-butanol (right) at T = 298.15 K. The solid blue lines are the results from the
PCP-SAFT. The crosses are experimental data from Smirnova & Kurtynina.™"
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Figure S5: p - z phase diagrams of the binary mixtures methylcyclohexane + ethanol at

T = 303.15 K (top left), methylcyclohexane + 2-propanol at T = 323.15 K (top right), methyl-
cyclohexane + 1-propanol at T' = 333.15 K (bottom left), and methylcyclohexane + butanol
at T' = 333.15 K (bottom right). The solid blue lines are the results from the PCP-SAFT.

The crosses are experimental data from Ishii®* (methylcyclohexane 4 ethanol), Nagata el a.*°
(methylcyclohexane + 2-propanol), Nagata™" (methylcyclohexane + 1-propanol) and Nagata™*
(methylcyclohexane + butanol).
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6 p-T Projections of the Remaining Mixtures

Figures. present the p-T' projections of the phase behavior for the systems cyclohex-
ane + l-propanol and cyclohexane + 1-butanol, methylcyclohexane + ethanol and methyl-
cyclohexane + 2-propanol, and methylcyclohexane + 1-propanol and methylcyclohexane +

1-butanol, respectively.
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Figure S6: p - T projections of the binary mixtures cyclohexane + 1-propanol (left) and cy-
clohexane + 1-butanol (right). Shown are results for the PCP-SAFT EOS. Solid black and gray
lines are the vapor pressure curves of the pure components; solid green and blue lines are the
azeotropic and critical line respectively; the circle represents the critical azeotropic end point
(CAEP) and the stars the critical point of the pure components.
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Figure S7: p - T projections of the binary mixtures methylcyclohexane + ethanol (left) and
methylcyclohexane 4+ 2-propanol (right). Shown are results for the PCP-SAFT EOS. Solid black
and gray lines are the vapor pressure curves of the pure components; solid green and blue lines
are the azeotropic and critical line respectively; the square represents the heteroazeotropic end
point (HAEP) and the stars the critical point of the pure components.
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Figure S8: p - T projections of the binary mixtures methylcyclohexane + 1-propanol (left) and

methylcyclohexane 4+ 1-butanol (right). Shown are results for the PCP-SAFT EOS. Solid black

and gray lines are the vapor pressure curves of the pure components; solid green and blue lines

are the azeotropic and critical line respectively; the circle represents the critical azeotropic end

point (CAEP) and the stars the critical point of the pure components.
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7 Clustering of Alcohol Molecules Studied by MD Sim-
ulations

Figure [S9| shows snapshots of the MD simulations, exemplary for the mixture of cyclohex-
ane + ethanol at 7' = 303.15 K and x{,. ~ 0.9 mol mol'. Fig. [SGA and [SIB show the
complete simulation scenario, from the side and front, respectively. Fig. [S9FC shows the
ethanol molecules alone and Fig. [S9D shows two exemplary chosen ethanol clusters from
that simulation snapshot. As can be seen from Figure [S9C, ethanol molecules are enriched
near the interface, as was shown in the main body of this work. In particular, it appears

that the clusters have a preferential residency in the vicinity of the interface. Figure [S9D

shows clusters of associating ethanol molecules in a trimer and pentamer.

Figure S9: MD simulation snapshots. (A) complete simulation scenario — side view, (B) com-
plete simulation scenario — view on interface, (C) only ethanol molecules — side view, and (D)
exemplary chosen clusters. Ethanol C-atoms are shown in gray, O-atoms in red and H-Atoms in
white. The six sites of cyclohexane are shown in rose.
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8 Detailed Examination of DFT Density Profiles for

Cyclohexane 4+ Ethanol

Two subtle elements to the DFT component density profiles were mentioned in the main
body of this work, namely: (a) a very small enrichment of the associating component; (b)
a minimum in the cyclohexane density profiles after the enrichment peak. This is exem-
plary shown in Figure for the mixture cyclohexane + ethanol at 7" = 303.15 K and
Tty = 0.038 mol mol. The difference for each component density profile (left: ethanol,

right: cyclohexane) to their respective liquid bulk phase density (p}) is shown.
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Figure S10: Difference between the DFT component density profiles of ethanol (left) and cyclo-

hexane (right) to their liquid bulk phase density (p}) for the mixture cyclohexane + ethanol at
T = 303.15 K and 2/, = 0.038 mol mol ™.

cyc

As outlined in the main body of this work, the DFT results (in contrast to the DGT re-
sults) only show a weak maximum in the total density profiles, which is exemplary shown in

Figure[ST1]for the mixture cyclohexane + ethanol at T = 303.15 K and 2/, = 0.191 mol mol!.

cyc
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Figure S11: Difference between the DFT total density profiles of the mixture ethanol + cy-

clohexane to the total liquid bulk phase density (p;.,) for the mixture cyclohexane + ethanol at
T = 303.15 K and z,. = 0.191 mol mol ™.
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9 Interfacial Properties of the Mixture Cyclohexane +
2-Propanol

A comparison of the interfacial properties calculated from both equations of state in combi-

nation with DGT and DFT as well as MD results for the mixture cyclohexane + 2-propanol
is presented in Figure

15
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Figure S12: Surface tension (top), relative adsorption (second and third from the top), enrich-
ment (second and third from the bottom) and interfacial thickness (bottom) of the system cyclo-
hexane + 2-propanol as a function of the liquid phase mole fraction of cyclohexane xgyc at T =
293.15 K, 303.15 K, and 313.15 K, respectively. Black dots are MD results, solid lines are results
from PCP-SAFT (blue), SAFT-VR Mie (green), sCPA (red), Peng-Robinson (magenta) EOS +

DGT, PCP-SAFT EOS + DFT (black).

16



10 DGT Component Density Profiles for Cyclohexane

+ 2-Propanol from Different EOS

The component density profiles of cyclohexane + 2-propanol are compared for the PCP-
SAFT, SAFT-VR Mie, sCPA, and Peng-Robinson EOS in Figures [S13]and [S14 Only DGT

results are shown.

PCP-SAFT PCP-SAFT

sCPA
[ Peng-Robinson

sCPA
[ Peng-Robinson

-10 -5 0 5 10 15 -10

Figure S13: Density profiles of the binary mixture of cyclohexane + 2-propanol at T = 303.15
K with different compositions. Results from PCP-SAFT (blue), SAFT-VR Mie (green), sCPA
(red), Peng-Robinson (magenta) EOS 4+ DGT. The dashed line indicates 2-propanol, the solid
line cyclohexane, and the dotted line the total density. The depicted concentrations are z. . =

cyc
0.3 (left), and 0.9 (right) mol mol .
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Figure S14: Density profiles of PCP-SAFT EOS (top left), SAFT-VR Mie EOS (top right),
sCPA EOS (bottom left), Peng-Robinson EOS (bottom right) + DGT, of the binary mixture
of cyclohexane + 2-propanol at T = 303.15 K. The liquid phase mole fraction of cyclohexane
is color coded. The dotted lines indicate 2-propanol; the solid lines cyclohexane. The depicted
concentrations are wéyc = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™.

18



11 Component Density Profiles of Additional Mixtures

Figures present the density profiles obtained from DGT and DFT which were men-
tioned in the main body of this work, but not discussed in detail therein. In Figs. [S15}{S26]
results are shown for the following systems: cyclohexane + 1-propanol; cyclohexane + 1-
butanol; methylcyclohexane + ethanol; methylcyclohexane + 2-propanol; methylcyclohexane
+ 1-propanol; methylcyclohexane + 1-butanol. In each case, results for DGT and DFT at
three temperatures are shown. In all cases, the PCP-SAFT EOS was used. The obtained
interfacial structures are qualitatively in agreement with the results discussed in the main

body of this work.
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Figure S15: Density profiles of PCP-SAFT EOS + DGT, of the binary mixture of cyclohex-
ane + l-propanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase mole
fraction of cyclohexane is color coded. The dotted lines indicate 1-propanol; the solid lines cyclo-

hexane. The depicted concentrations correspond to a liquid phase mole fraction of cyclohexane of
Teye = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol ™.
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Figure S16: Density profiles of PCP-SAFT EOS + DFT, of the binary mixture of cyclohex-
ane + l-propanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase mole
fraction of cyclohexane is color coded. The dotted lines indicate 1-propanol; the solid lines cyclo-
hexane. The depicted concentrations correspond to a liquid phase mole fraction of cyclohexane of
z!..=0.01,0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol'.
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Figure S17: Density profiles of PCP-SAFT EOS + DGT, of the binary mixture of cyclohex-
ane + 1-butanol at 7' = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase mole
fraction of cyclohexane is color coded. The dotted lines indicate 1-butanol; the solid lines cyclo-
hexane. The depicted concentrations correspond to a liquid phase mole fraction of cyclohexane of
z! . =0.01,0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol .

cyc
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Figure S18: Density profiles of PCP-SAFT EOS + DFT, of the binary mixture of cyclohex-
ane + 1-butanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase mole
fraction of cyclohexane is color coded. The dotted lines indicate 1-butanol; the solid lines cyclo-
hexane. The depicted concentrations correspond to a liquid phase mole fraction of cyclohexane of
.=

tye = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™".
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Figure S19: Density profiles of PCP-SAFT EOS + DGT, of the binary mixture of methylcyclo-
hexane + ethanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase mole
fraction of methylcyclohexane is color coded. The dotted lines indicate ethanol; the solid lines
methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction of
methylcyclohexane of :L‘fnecyc =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol!.
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Figure S20: Density profiles of PCP-SAFT EOS + DFT, of the binary mixture of methylcyclo-
hexane + ethanol at T' = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase mole
fraction of methylcyclohexane is color coded. The dotted lines indicate ethanol; the solid lines
methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction of
methylcyclohexane of a:;necyc =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™.
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Figure S21: Density profiles of PCP-SAFT EOS + DGT, of the binary mixture of methylcyclo-
hexane + 2-propanol at T' = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase
mole fraction of methylcyclohexane is color coded. The dotted lines indicate 2-propanol; the solid
lines methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction
of methylcyclohexane of acfnecyc =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™.
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Figure S22: Density profiles of PCP-SAFT EOS + DFT, of the binary mixture of methylcyclo-
hexane + 2-propanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase
mole fraction of methylcyclohexane is color coded. The dotted lines indicate 2-propanol; the solid
lines methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction
of methylcyclohexane of x;necyc =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™.
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Figure S23: Density profiles of PCP-SAFT EOS + DGT, of the binary mixture of methylcyclo-
hexane + 1-propanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase
mole fraction of methylcyclohexane is color coded. The dotted lines indicate 1-propanol; the solid
lines methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction
of methylcyclohexane of x;necyc =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™.
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Figure S24: Density profiles of PCP-SAFT EOS + DFT, of the binary mixture of methylcyclo-
hexane + 1-propanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase
mole fraction of methylcyclohexane is color coded. The dotted lines indicate 1-propanol; the solid
lines methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction
of methylcyclohexane of . =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol™.
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Figure S25: Density profiles of PCP-SAFT EOS + DGT, of the binary mixture of methylcy-

clohexane + 1-butanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase
mole fraction of methylcyclohexane is color coded. The dotted lines indicate 1-butanol; the solid
lines methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction

of methylcyclohexane of . =0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 mol mol'.
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Figure S26: Density profiles of PCP-SAFT EOS + DFT, of the binary mixture of methylcy-

clohexane + 1-butanol at T = 293.15 K, 303.15 K, and 313.15 K, respectively. The liquid phase
mole fraction of methylcyclohexane is color coded. The dotted lines indicate 1-butanol; the solid
lines methylcyclohexane. The depicted concentrations correspond to a liquid phase mole fraction

of methylcyclohexane of x!

mecyc
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12 Described Kinks in the Component Density Pro-
files for the sCPA and Peng-Robinson EOS as the

Type ’iv’ Behavior Changes to a Monotonic Tran-
sition

As outlined in the main body of this work, a kink in the interfacial properties is obtained
for the mixture cyclohexane + ethanol for the sCPA and Peng-Robinson EOS, as the ’type
iv’ behavior changes to a monotonic transition. This kink is also observed for the Peng-
Robinson EOS and the mixture cyclohexane + 2-propanol (cf. Fig. [S12)). Fig. m shows
this transition exemplary for the mixture cyclohexane + ethanol and for the temperature
of 293.15 K. For the sCPA (left) this change occurs near pure cyclohexane, whereas for the

Peng-Robinson (right) it occurs at approximately /. = 0.7 mol mol.
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Figure S27: Density profiles of the binary mixture of cyclohexane + ethanol at T' = 293.15 K.
Color coded is the liquid mole fraction of cyclohexane $éyc in the range of 0.6 to 1 mol mol™.
The dotted lines indicate ethanol; the solid lines cyclohexane. Shown are DGT results for the

sCPA EOS (left) and Peng-Robinson EOS (right).
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13 Numerical Values of the MD Results for the Mix-
tures Cyclohexane + Ethanol and Cyclohexane +
2-Propanol

The numerical results of the MD simulations shown in the main body of this work for the
mixture cyclohexane + ethanol and cyclohexane + 2-propanol are given in the following
tables. Tables list the numerical results for the mixture cyclohexane + ethanol. The
results for the mixture cyclohexane + 2-propanol are listed in Tables For both
mixtures the tables are structured such that the bulk phase properties are shown in one
table and the interfacial properties corresponding to these simulations are shown in a second

table.
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14 Numerical Values of All Component Density Pro-
files at the Molecular Simulation Composition

The numerical values of all component density profiles (at the molecular simulation com-
position) shown in the main body of this work are given in the electronic Supplementary
Information. They are structured as .csv tables labeled with the method (MS, DFT, or
DGT), the investigated mixture, and corresponding temperature. The values for the z-
coordinate are shifted, such that z(pt') =0 at pif = pir. +0.5(p, — piry) (see main body of

this work).
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