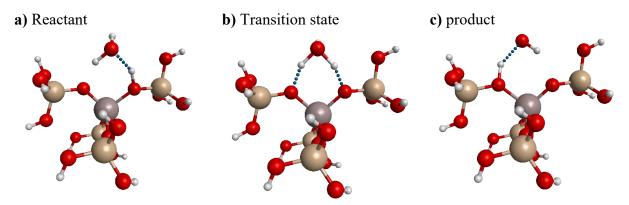
Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supplementary Information

Methanol-to-Hydrocarbon Initiation Reactions over a Zeolite Catalyst: Reactive Molecular Dynamics Simulations


E. Grajales-González^{a,c*1}, Adri C. T. van Duin^{b,*2}, S. Mani Sarathy^a

Force Field Errors in the Estimation of Zeolite Framework Parameters

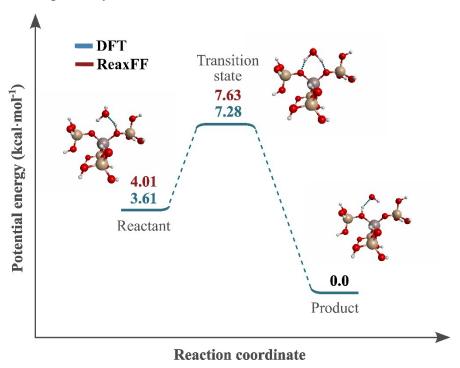
Table S1. Percentage errors of lattice parameters determined using the force field developed in this work. Reference values are from the International Zeolite Association database [1].

	% Error					
Framework	Length a	Length b	Length c	Angle α	Angle β	Angle γ
FER	2.36	2.36	2.36	0.00	0.00	0.00
IFR	0.16	0.16	2.36	0.00	0.00	0.00
MFI	1.90	1.90	1.91	0.00	0.00	0.00
TON	0.52	0.52	0.52	0.00	0.00	0.00

Water-assisted Proton Transfer

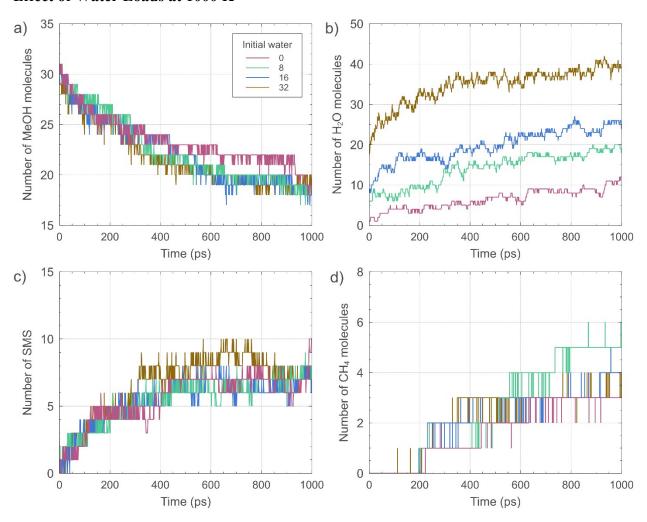
Figure S1. Water-assisted proton transport in the first coordination sphere of an aluminum atom. This reaction was found significant in the reactive simulation of the initiation reactions of the methanol-to-hydrocarbon process, and the force field well reproduced the potential energy barrier

^a Clean Energy Research Platform, Physical Sciences and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia


^b Pennsylvania State University (PSU), PA, 16802, USA, Department of Mechanical Engineering

^cPresent address: Energy and Particle Technology Laboratory, Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada, K1S 5B6

^{*}¹Corresponding author: edwing.grajalesgonzalez@kaust.edu.sa


^{*2}Corresponding author: acv13@psu.edu

 $(7.63 \text{ kcal·mol}^{-1})$ estimated using density functional theory $(7.28 \text{ kcal·mol}^{-1})$ at the $\omega B97X$ -D/6-311G(d,p) level, as shown in Figure S2. This system is built upon the works of Ryder et al. [2] and Joshi et al. [3]. White, red, brown, and dark pink spheres represent hydrogen, oxygen, silicon, and aluminum atoms, respectively.

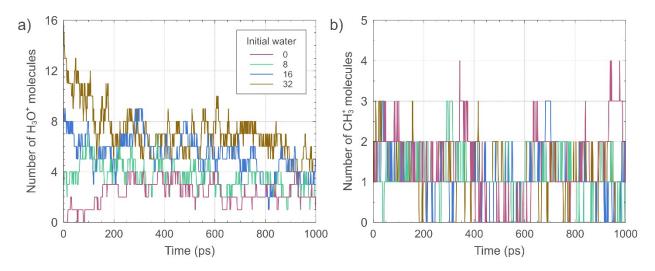


Figure S2. Density functional theory (DFT) and ReaxFF potential energy diagram of the water-mediated proton transport as a function of the forming ZO-H bond length. The transition state energy is 7.28 and 7.63 kcal·mol⁻¹ for DFT and ReaxFF, respectively. The asymmetry of the reaction pathway is attributed to the differences of the binding energies in the reactant and product [3].

Effect of Water Loads at 1000 K

Figure S3. Number profiles of (a) methanol, (b) water, (c) surface methoxy species (SMS), and (d) methane as a function of time of simulations conducted at 1000 K and the initial water loads of 0, 8, 16, and 32.

Figure S4. Number profiles of the (a) hydronium ions and (b) methyl cations species as a function of time of simulations conducted at 1000 K and the initial water loads of 0, 8, 16, and 32.

Figure S5. Number profiles of the Zundel cation as a function of time of simulations conducted at 800 K and the initial water loads of 0, 8, 16, and 32.

References

- [1] Structure Commission of the International Zeolite Association, Database of Zeolite Structures, 2022.
- [2] J.A. Ryder, A.K. Chakraborty, A.T. Bell, Density Functional Theory Study of Proton Mobility in Zeolites: Proton Migration and Hydrogen Exchange in ZSM-5, J. Phys. Chem. B 104 (30) (2000) 6998–7011.
- [3] K.L. Joshi, G. Psofogiannakis, A.C.T. van Duin, S. Raman, Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite, Phys. Chem. Chem. Phys. 16 (34) (2014) 18433–41.