Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Insights on Binding and Selectivity of Surfen Towards Different DNA Topologies

Laxmi Kashyapa, Kritika Varshneya, Manoj Mundea*

¹ School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India

*Manoj Munde;

Email: mundemanoj@gmail.com

Table S1: Interaction between surfen and various DNAs used in this study

Duplex DNA

Donor	Acceptor	D-HA distance (Å)	
-NH ₂ group of the amino- quinoline compound	T19 (Oxygen atom of the carbonyl functional group attached to the C2 carbon of the thymine pyrimidine ring)	2.060	
-NH group of the amino- quinoline compound	T8 (Oxygen atom of the carbonyl functional group attached to the C2 carbon of the thymine pyrimidine ring of chain A)	1.938	
-NH group of the amino-quinoline compound	T8 (Oxygen atom of the carbonyl functional group attached to the C2 carbon of the thymine pyrimidine ring of chain A)	2.232	
an -NH ₂ group of the amino- quinoline compound	C9 (Chain A oxygen atom double-bonded to the C2 carbon of the cytosine ring.) of chain A interacts with the -NH ₂ group of the aminoquinoline ring.	1.921	

AP Q-DNA

Donor	Acceptor	D-HA distance (Å)
-NH group of the amino-	OP2, a non-bridging oxygen	1.836
quinoline compound	atom in the phosphate group	
-	connected to G16	
-NH group of the amino-	OP2, a non-bridging oxygen	2.124
quinoline compound	atom in the phosphate group	
	connected to G16	
an -NH ₂ group of the amino-	OP2, a non-bridging oxygen	2.161
quinoline compound	atom in the phosphate group	
-	connected to T17	
G20-Nitrogen atom in the	Oxygen atom at 2 nd position	3.452

^{*}Corresponding Author

exocyclic amino group (– NH ₂) attached to the C2	
carbon of guanine	

HB Q-DNA

Donor	Acceptor	D-HA distance (Å)	
-NH ₂ group of the amino-	oxygen atom bonded to the 3'	2.202	
quinoline compound	carbon of the sugar ring in		
	the DNA backbone at G11		
G11 (nitrogen atom in the	-NH group of the amino-	2.182	
exocyclic amino group (-	quinoline compound		
NH ₂) attached to the C2			
carbon of guanine)			

Table S2: Time-resolved fluorescence decay parameters of surfen measured with and without DNA.

Complex	T1(ns)	T2(ns)	T3(ns)	Average life time(τa)(ns)	χ2
Surfen	1.34023	0.528643	0.233114	1.459455	1.13357
Surfen-GQ(AP)	2.03146	0.693939	0.458109	2.195054	1.050276
Surfen-GQ(H)	1.77727	0.780467	0.327037	1.968442	1.031221
Surfen-Duplex DNA	4.1457	0.680807	0.537048	4.235	1.23653

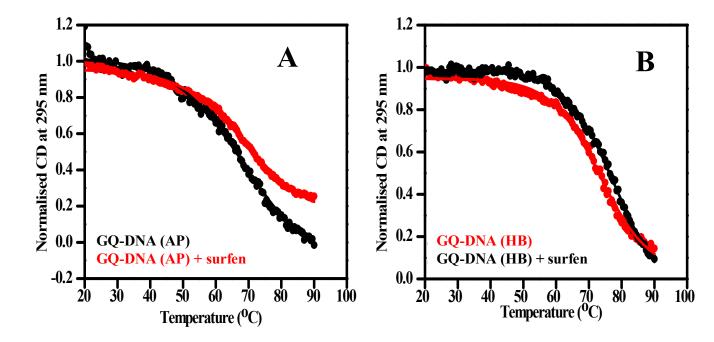
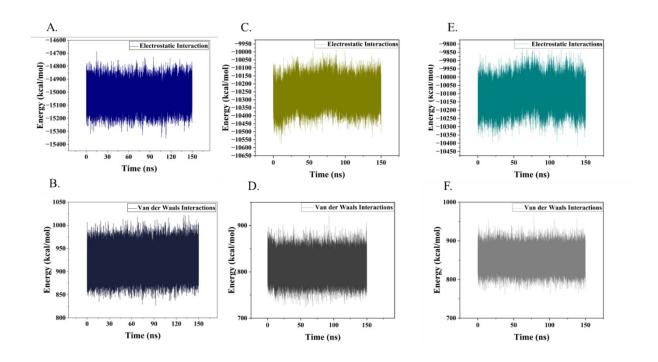
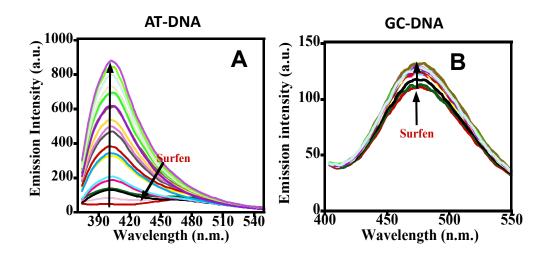




Fig S1: CD melting profiles of GQ-DNA (1 μ M) at 295 nm in the absence and presence of surfen (1.5 μ M) for (A) AP GQ-DNA and (B) HB GQ-DNA.

CD melting studies assess the thermal stability of different types of DNA, both with and without ligands, by comparing their melting temperatures (Tm), which represent the midpoint of the melting transition at specific wavelengths. Using Figure 7 (A, B) to illustrate the change in ellipticity at 295 nm, we investigated the melting of Surfen-quadruplex complexes in potassium ion (hybrid topology) and sodium ion (antiparallel topology). The melting temperature of GQ-DNA (AP) and GQ-DNA (HB), respectively, is 65°C and 67°C when the ligand is not present. GQ-DNA's melting temperature increases by 3°C when hybrid GQ DNA is present and by 2°C when antiparallel GQ DNA is present

Fig S2. The contribution of surfen binding (A) electrostatic and (B) Van der Waals interactions with dsDNA; (C) electrostatic and (D) Van der Waals interactions with AP GQ-DNA; (E) electrostatic and (F) Van der Waals interactions with HB GQ-DNA.

Fig S3: Binding of surfen using fluorescence with (A) AT-DNA and (B) GC-DNA. The concentration of surfen was used as $1\mu M$ and DNA was titrated from 0.01 to $1\mu M$ pe DNA strand concentration. Surfen binds very strongly with AT-DNA compared to GC-DNA.