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WAVE PACKET PROPAGATIONS

Standard approaches achieve numerically exact solutions by representing the wavepacket
as a linear combination of time-independent basis functions (usually one-dimensional).
Each basis function has a time-dependent coefficient that captures the wavepacket’s
evolution[2, 5, 16].
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where Xg-:)(q,{) are the set of 1D orthogonal basis functions for the xth degree of free-
dom(DOF) and A, j,(t) the time-dependent expansion coefficients which are obtained
by using a variational method equations of motion|3, 6].

The Multiconfiguration Time-Dependent Hartree (MCTDH) method provides an
efficient approach to obtain W(q,t) by expanding the wavefunction in a time-dependent

basis set (@), called single-particle functions (SPFs)[1, 9, 11].
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The time-dependent single-particle functions (SPFs) are further expanded in a
time-independent basis set constructed using a discrete variable representation (DVR).
A key advantage of MCTDH is its use of mode combination, allowing the use of

low-dimensional SPFs based on combined or logical coordinates(Q,), which improves

efficiency[4, 17].

While combining modes significantly enhances MCTDH efficiency compared to stan-
dard methods, it becomes increasingly challenging to propagate larger combined SPF's
in larger systems. Fortunately, we can leverage the strengths of MCTDH itself to ad-
dress this bottleneck. This is the core idea behind the Multilayer Multiconfiguration
Time-Dependent Hartree (ML-MCTDH) approach. Instead of directly propagating
increasingly complex SPFs;, ML-MCTDH employs a recursive strategyin which multi-
configurational ansatz is used for the multidimensional SPFs of an underlying MCTDH

expansion|8, 10, 13-16].



For quantum dynamics simulations of the ethylene molecule, the standard multi-
configurational time-dependent Hartree (MCTDH) method with mode combination was
employed. For more complex molecules, allene and butadiene, a matrix product state
(MPS)-type wave function ansatz implemented within the ML-MCTDH framework was
employed. The MPS approaches are a compact and highly efficient representation of
wave functions in high-dimensional systems, by decomposing the wave function into a
network of low-rank tensors.

Similarly to the ML-MCTDH approach, the starting point for the MPS-based
method for wavepacket propagation is to expand the d-dimensional wave function,
U(Q1, Q2 ..., Qa, ) in terms of one-dimensional discrete variable representation (DVR)

basis functions, Xz (QH) for each degree of freedom:
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However, analogously to the MCTDH formulation, the time-dependent coefficient
tensor,C(t) € CN1**Na gcales exponentially with the number of degrees of freedom,
making direct propagation computationally intractable for larger systems. To address
this, the time-dependent coefficient tensor is then further expanded using a MPS de-
composition, where the full coefficient tensor is expressed as a sequential product of

lower-rank tensors,r,:
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Similarly to the MI strategy in ML-MCTDH, each MPS tensor is factorized into a

product of two smaller tensors,b®(¢) € C==1%=*™= and ¢®(t) € Cs*Nx:
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The MCTDH operator files (*.op) that fully define the vibronic Hamiltonian em-

ployed for each molecule are included separately.



Table S1. Mathematical form of the diabatic potential matrix W;;(Q) for different models.

Model Expression for WZ](Q)
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VIBRONIC SPECTRA CALCULATION

Ethylene

FElectronic structure Calculation

Geometry information of ethylenee

C 0.0000000 0.0000000 0.0000000

C 0.0000000 0.0000000 1.3004180

C 0.0000000 0.0000000 -1.3004181

H 0.0000000 0.9258140 1.8632318

H 0.0000000 -0.9258140 1.8632318

H 0.9258140 0.0000000 -1.8632318

H -0.9258140 0.0000000  -1.8632318

Computed | Adjusted | Computed| Energy
States o .
fi fi E; (eV) |Shifts (eV)

1B1, 0.098 0.098 285.11 -0.25
1B3,, 0.009 0.009 286.89 0.4
1Bay, 0.028 0.028 287.52 0.4
2B3,, 0.001 0.001 287.60 0.15
2B1y 0.010 0.010 288.43 0.15
2Bay, 0.005 0.005 288.60 0.15
3B3u 0.0002 0.0002 288.94 0.15
4B3,, 0.013 0.026 289.66 -0.05
3B2. 0.025 0.050 289.79 -0.05
5B3y 0.001 0.002 289.89 -0.05
3B1u 0.007 0.014 289.94 -0.05
6B3., 0.0 0.0 290.37 -0.05

Table S2. Computed and adjusted oscillator strengths (f;) for ethylene, along with the applied
energy shifts. The computed values are obtained from electronic structure calculations, while
the adjusted values are modified to improve agreement with experimental spectra. The Energy
Shifts column reflects the applied corrections to the computed excitation energies, yielding

empirically informed theoretical best estimates of the vertical excitation energies (€g;).



normal | Operator
mode |File Label
Q1 Q10
Q2 Q8
Q3 Q6
Q4 Q4
Q5 Q11
Q6 Q5
Q7 Q2
Q8 Q3
Q9 Q12
Q10 Q1
Q11 Q9
Q12 Q7

Table S3. Mapping of normal mode labels used in the operator files of ethylene.

t «

g g au
3136.83 cm-1 1687.08 Cm-l,}') I 1059.79 cm-1 I
Q6 b Q8 T

A
blu b2g
- blg
1244.62 W 97839 cm-1 984.02 em-1

blg
3191.44 cm-1 ux
@ \

\
b2u \
3219.76 cm-1 \K

Q1 R

b2u

833.93 cmy\)

b3u
3123.18 cm-1

b3u
1478.23 cm-

Figure S1. Vibrational normal modes of ethylene



Excitation Energies and Character

Spectra
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Figure S2. The experimental X-ray absorption of ethylene compared to simulations without
shifting excitation energy of each core-excited state in the calculated spectra performed em-
ploying a hierarchy of approximations. From bottom, the Iy g is a purely electronic spectrum
employing vertical excitation energies and oscillator strengths only (green line), Iy is poisson
distribution spectrum corresponding to vibrational structure arising from treating the excited
states as a series of displaced harmonic oscillators (blue line), and Iy 4, the full non-adiabatic

vibronic coupling simulation (red line). The experimental spectrum is at top (black line). [7].

The contributions of individual transitions to the total spectrum are illustrated in
Figure S5. Our simulations indicate that the prominent spectral feature centered at
285 €V is attributed to the dipole-allowed C 1s — #* transition. The spectral region
between 287 and 290 eV exhibits a more complex structure as a result of overlapping
contributions from multiple states. But, overall speaking, the peaks above 287 eV are

generally attributed to C 1s Rydberg transitions.



Ethylene
T

T T T T T T T
|:| Experimantal Spectrum

— La@®

>

= — Iw(®E)

g

2

=

. | | . |
282 284 286 288 290 292

Excitation Energy (eV)

Figure S3. Comparison of computed X-ray absorption spectra of ethylene to assess the effect
of vibronic coupling on the total absorption spectra. Spectra were calculated using the poisson
distribution spectrum (blue line) and the the full non-adiabatic vibronic coupling simulation

(red line). The shaded area represents the experimental spectrum, shown for comparison [7].
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Figure S4. The experimental X-ray absorption of ethylene compared to simulations performed
employing a hierarchy of approximations. From bottom, the Iy g is a purely electronic spec-
trum employing vertical excitation energies and oscillator strengths only (green line), Iy is
poisson distribution spectrum corresponding to vibrational structure arising from treating the
excited states as a series of displaced harmonic oscillators (blue line), 44, the vibronic cou-
pling Hamiltonian model considering only one-mode terms for the diabatic potential and all
interstate couplings were switched off (orange line), I1p_ 4, the vibronic coupling Hamilto-
nian model considering only one-mode terms for the diabatic potential and inter-state coupling
terms, and Iy 4, the full non-adiabatic vibronic coupling simulation (red line). The experi-
mental spectrum is at top (black line). [7]. The bottom panels evince a detailed comparison

of the various approximations with the experimental band origin.
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Figure S5. Vibronic absorption spectra of ethylene including individual state component
computed using vibronic coupling Hamiltonians parameterized via fitting to quasi-diabatic

potentials computed at the QD-DFT/MRCI(2) levels of theory using the aug-cc-pVTZ basis.
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Allene

Geometry and Normal Modes

Geometry information of Allene

C 0.0000000 0.0000000 0.0000000
C 0.0000000 0.0000000 1.3004154
C 0.0000000 0.0000000 -1.3004154
H 0.6546490 0.6546490 1.8632299
H -0.6546490 -0.6546490 1.8632299
H 0.6546490 -0.6546490 -1.8632299
H -0.6546490 0.6546490 -1.8632299

Allene, in its equilibrium configuration, belongs to the Dy point group, whose char-
acter table includes the irreducible representations A;, A,, By, By and E. DFT-MRCI
calculations were performed using the Cs, subgroup of Dy, as these calculations re-
quire Abelian point groups. The Cy, point group has irreducible representations of Aj,
As, Bi, Bs. Consequently, the symmetry assignments of the vibrational normal modes
differ between the Dy, and CY, point groups. Furthermore, the spectroscopic ordering
of the normal modes differs from the ordering used in the operator files for the simula-
tions. Table 3 provides a mapping between the symmetry labels of the normal modes

in the two point groups and the corresponding labels used in the operator files.
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States Com[‘mted Adjusted C()l(;ﬂputed Fj)nergy
fi fi E; (eV) |Shifts (eV)
1B, 0.0564 0.0564 285.63 -0.05
1B, 0.0564 0.0564 285.63 -0.05
2B> 0.0417 0.0417 285.74 0.05
2B, 0.0417 0.0417 285.74 0.05
3B; 0.0055 0.0110 286.61 -0.05
3B> 0.0055 0.0110 286.61 -0.05
2A; 0.0044 0.0088 286.98 0.25
4A, 0.0066 0.0132 287.76 0.05
4B, 0.0073 0.0146 288.16 0.35
4B; 0.0073 0.0146 288.16 0.35
5B1 0.0067 0.0134 288.25 0.35
5Bg 0.0067 0.0134 288.25 0.35
7B1 0.0024 0.0048 289.18 0.35
7By 0.0024 0.0048 289.18 0.35

Table S4. Computed and adjusted oscillator strengths (f;) for allene, along with the applied
energy shifts. The computed values are obtained from electronic structure calculations, while
the adjusted values are modified to improve agreement with experimental spectra. The Energy
Shifts column reflects the applied corrections to the computed excitation energies, yielding

empirically informed theoretical best estimates of the vertical excitation energies (€g;).
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normal | Symmetry | Symmetry | Operator
mode in Doy in Cay File Label
Q1 ay ay Q13
Q2 ay ay Q9
Q3 ay ay Q8
Q4 by az Q5
Q5 b2 a1 Q12
Q6 bo ay Q11
Q7 b2 ay Q10
Q8 e bo Q14
Q8y e by Q15
Q9. e by Q16
Q9y e b Q17
Q10, e bo Q1
Q10, e by Q2
Q1l1, e bo Q3
Q11, e by Q4

Table S5. Mapping of normal mode symmetries between Dyy and Cb, point groups, along

with the labels used in the operator files of allene.
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Figure S6. Vibrational normal modes of allene.
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Figure S7. The experimental X-ray absorption of allene compared to simulations without
shifting excitation energy of each core-excited state in the calculated spectra performed em-
ploying a hierarchy of approximations. From bottom, the Iy g is a purely electronic spectrum
employing vertical excitation energies and oscillator strengths only (green line), Iy is poisson
distribution spectrum corresponding to vibrational structure arising from treating the excited
states as a series of displaced harmonic oscillators (blue line), and Iy 4, the full non-adiabatic

vibronic coupling simulation (red line). The experimental spectrum is at top (black line). [7].
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Figure S8. The experimental X-ray absorption of allene compared to simulations performed
employing a hierarchy of approximations. From bottom, the I/ g is a purely electronic spec-
trum employing vertical excitation energies and oscillator strengths only (green line), Iy is
Poisson distribution spectrum corresponding to vibrational structure arising from treating the
excited states as a series of displaced harmonic oscillators (blue line), 44, the vibronic cou-
pling Hamiltonian model considering only one-mode terms for the diabatic potential and all
interstate couplings were switched off (orange line), I1p_n4a, the vibronic coupling Hamilto-
nian model considering only one-mode terms for the diabatic potential and inter-state coupling
terms, and Iy 4, the full non-adiabatic vibronic coupling simulation (red line). The experi-
mental spectrum is at top (black line). [7]. The bottom panels evince a detailed comparison

of the various approximations with the experimental band origin.

16



— Iip.na(E)

I]D_ch (Turning Off Coupling

Coefficient Along Specific Modes

— Iy(E)

Intensity

. T | T —

e
282 284 286 288 290 292
Excitation Energy (eV)

Figure S9. Simulated X-ray absorption spectra of allene performed employing a hierarchy
of approximations. From bottom, Igy is poisson distribution spectrum corresponding to
vibrational structure arising from treating the excited states as a series of displaced harmonic
oscillators (blue line), I1p_y ¢, the vibronic coupling Hamiltonian model considering only one-
mode terms for the diabatic potential and inter-state coupling terms turning off inter-state
coupling coefficients along modes Q1, Q2 and Q5(maroon line), and I1p_y¢, the vibronic
coupling Hamiltonian model considering only one-mode terms for the diabatic potential and

inter-state coupling terms (cyan line).
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Figure S10. Vibronic absorption spectra of allene including individual state component com-

puted using vibronic coupling Hamiltonians parameterized via fitting to quasi-diabatic poten-

tials computed at the QD-DFT/MRCI(2) levels of theory using the aug-cc-pVTZ basis.
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Comparison of the allene Iyy(FE) spectra at the band origin obtained with

different Lorentzian broadening values.
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Butadiene

Geometry and Normal Modes

Geometry information of Butadiene

C 0.0002840 0.7265345 0.0000000
C -0.0002840 -0.7265345 0.0000000
C 1.1026055 1.4789691 0.0000000
C -1.1026055 -1.4789691 0.0000000
H -0.9728538 1.2088423 0.0000000
H 0.9728538 -1.2088423 0.0000000
H 1.0522871 2.5589403 0.0000000
H 2.0903284 1.0337469 0.0000000
H -1.0522871 -2.5589403 0.0000000
H -2.0903284 -1.0337469 0.0000000
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States Com[‘mted Adjusted C()l(;ﬂputed Fj)nergy
fi fi E; (eV) |Shifts (eV)
1A, 0.0997 0.0997 284.73 -0.3
2A, 0.0840 0.0714 285.36 -0.3
1B, 0.0102 0.0204 286.96 0.2
2B, 0.0300 0.0600 287.33 0.2
3B, 0.0110 0.0220 287.54 0.2
4B, 0.0028 0.0056 287.55 0.2
3A, 0.0008 0.0008 287.88 0.2
5B, 0.0041 0.0041 287.94 0.2
6B, 0.0011 0.0011 288.18 0.2
4A, 0.0130 0.0130 288.25 0.2
7By 0.0065 0.0065 288.28 0.2
8By, 0.0045 0.0045 288.30 0.2
5A, 0.0060 0.0060 288.39 0.2

Table S6. Computed and adjusted oscillator strengths (f;) for butadiene, along with the ap-
plied energy shifts. The computed values are obtained from electronic structure calculations,
while the adjusted values are modified to improve agreement with experimental spectra. The
Energy Shifts column reflects the applied corrections to the computed excitation energies,

yielding empirically informed theoretical best estimates of the vertical excitation energies

(601').
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normal | Operator
mode |File Label
Q1 Q23
Q2 Q22
Q3 Q19
Q4 Q18
Q5 Q16
Q6 Q13
Q7 Q12
Q8 Q6
Q9 Q23
Q10 Q11
Q11 Q8
Q12 Q4
Q13 Q1
Q14 Q9
Q15 Q7
Q16 Q5
Q17 Q24
Q18 Q21
Q19 Q20
Q20 Q17
Q21 Q15
Q22 Q14
Q23 Q10
Q24 Q2

Table S7. Mapping of normal mode labels used in the operator files of butadiene.
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Figure S12. Vibrational normal modes of butadiene.
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Figure S13. The experimental X-ray absorption of butadiene compared to simulations with-
out shifting excitation energy of each core-excited state in the calculated spectra performed
employing a hierarchy of approximations. From bottom, the I/ g is a purely electronic spec-
trum employing vertical excitation energies and oscillator strengths only (green line), Iy
is poisson distribution spectrum corresponding to vibrational structure arising from treating
the excited states as a series of displaced harmonic oscillators (blue line), and Iy 4, the full
non-adiabatic vibronic coupling simulation (red line). The experimental XAS spectrum (black

line) [7]) and EELS spectrum (magenta line) [12] are at top.
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Figure S14. The experimental X-ray absorption of butadiene compared to simulations per-
formed employing a hierarchy of approximations. From bottom, the Iy g is a purely electronic
spectrum employing vertical excitation energies and oscillator strengths only (green line), Iy
is Poisson distribution spectrum corresponding to vibrational structure arising from treating
the excited states as a series of displaced harmonic oscillators (blue line), 44, the vibronic
coupling Hamiltonian model considering only one-mode terms for the diabatic potential and
all interstate couplings were switched off (orange line), I1p_n 4, the vibronic coupling Hamil-
tonian model considering only one-mode terms for the diabatic potential and inter-state cou-
pling terms, and Iy 4, the full non-adiabatic vibronic coupling simulation (red line). The
experimental XAS spectrum (black line) [7]) and EELS spectrum (magenta line) [12] are at
top. The bottom panels evince a detailed comparison of the various approximations with the

experimental band origin.
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Figure S15. Simulated X-ray absorption spectra of butadiene performed employing a hierar-
chy of approximations. From bottom, Iy is poisson distribution spectrum corresponding to
vibrational structure arising from treating the excited states as a series of displaced harmonic
oscillators (blue line), I1p_y ¢, the vibronic coupling Hamiltonian model considering only one-
mode terms for the diabatic potential and inter-state coupling terms turning off inter-state
coupling coefficients along modes Q2, Q14, Q17, Q20 and Q21(maroon line), and I1p_vyc,
the vibronic coupling Hamiltonian model considering only one-mode terms for the diabatic
potential and inter-state coupling terms (cyan line).The black curve is the experimental spec-

trum shown for comparison [7].
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Figure S16. Vibronic absorption spectra computed of butadiene including individual state
component using vibronic coupling Hamiltonians parameterized via fitting to quasi-diabatic

potentials computed at the QD-DFT/MRCI(2) levels of theory using the aug-cc-pVTZ basis.
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