

Fig. SI1 The natural transition orbitals for the $\pi \leftarrow \pi^*$ excitation of fumarate (a,b) and maleate (c,d).

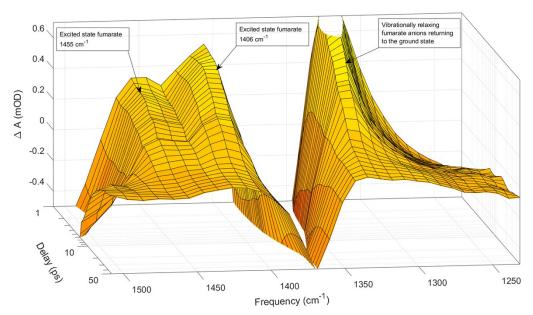


Fig. SI2. The transient absorption spectra of aqueous fumarate recorded as a function of time after the 200 nm excitation pulse. Here shown on a logarithmic timescale between 1ps and 50 ps. The lowest excited state of fumarate, $^{1}A_{u}$, is identified by its 1406 cm $^{-1}$, 1455 cm $^{-1}$ and 1612 cm $^{-1}$ vibrational transitions observed at short delays. Also shown is the induced absorption associated with vibrationally relaxing fumarate anions returning to the ground state.

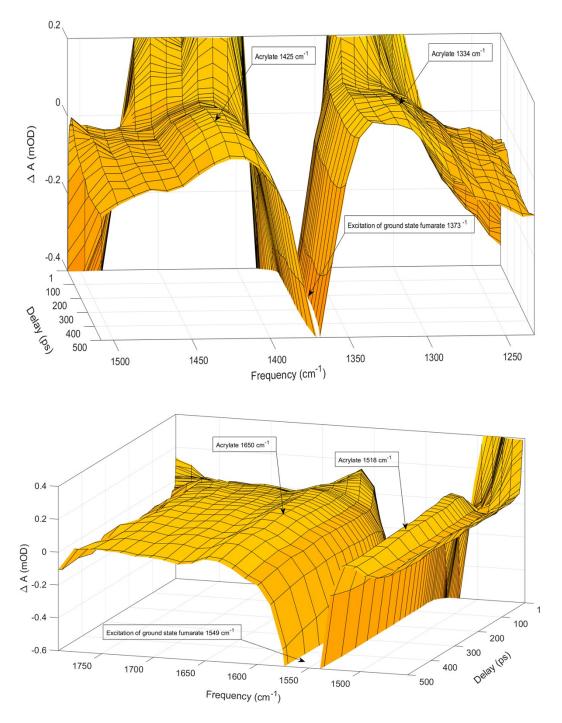


Fig. SI3. The transient absorption spectra of aqueous fumarate recorded as a function of time after the 200 nm excitation pulse. Here shown on a linear timescale between 1ps and 500 ps and with a truncated induced absorption axis. Acrylate is identified by the 1334 cm⁻¹ and 1425 cm⁻¹ transitions observed at long delays on either side of fumarate's symmetric carboxylate stretch at 1373 cm⁻¹. In addition, acrylate is identified by its asymmetric carboxylate stretch transition observed at 1518 cm⁻¹ on the low frequency flank of the negative absorption pertaining to fumarate's asymmetric carboxylate stretch at 1549 cm⁻¹. Acrylate's transition expected at 1639 cm⁻¹ shows up as the positive absorption around 1650 cm⁻¹.

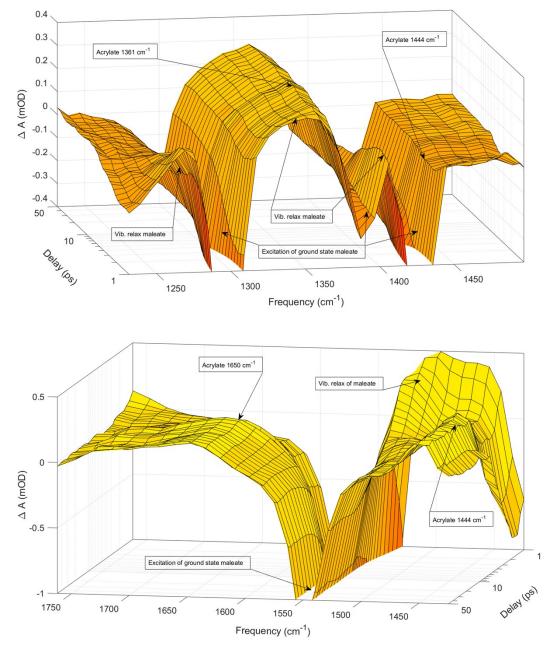
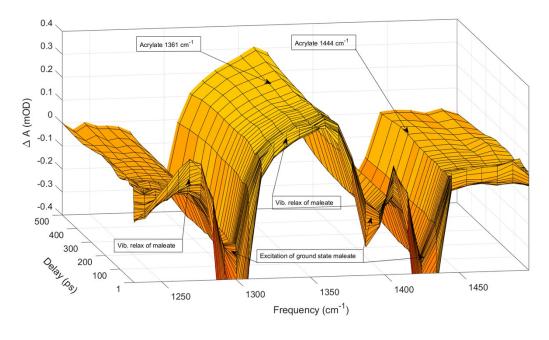



Fig. SI4. The transient absorption spectra of aqueous maleate recorded for the first 50 ps after the 200 nm excitation pulse. The spectra are shown on a logarithmic timescale with truncated induced absorption axis. Acrylate is identified by the positive absorption at 1361 cm⁻¹, 1444 cm⁻¹ and 1650 cm⁻¹, while its transition at 1548 cm⁻¹ is dominated by the negative absorption associated with the asymmetric carboxylate stretch of maleate. Acrylate appears 3 ps after the photoexcitation of maleate.

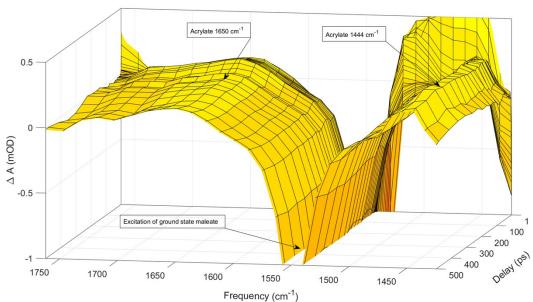


Fig. SI5. The transient absorption spectra of aqueous maleate recorded for the first 500 ps after the 200 nm excitation pulse. The data are shown on a linear timescale with truncated induced absorption axis. Acrylate is identified by the positive absorption at 1361 cm⁻¹, 1444 cm⁻¹ and 1650 cm⁻¹, while its transition at 1548 cm⁻¹ is dominated by the negative absorption associated with the asymmetric carboxylate stretch of maleate

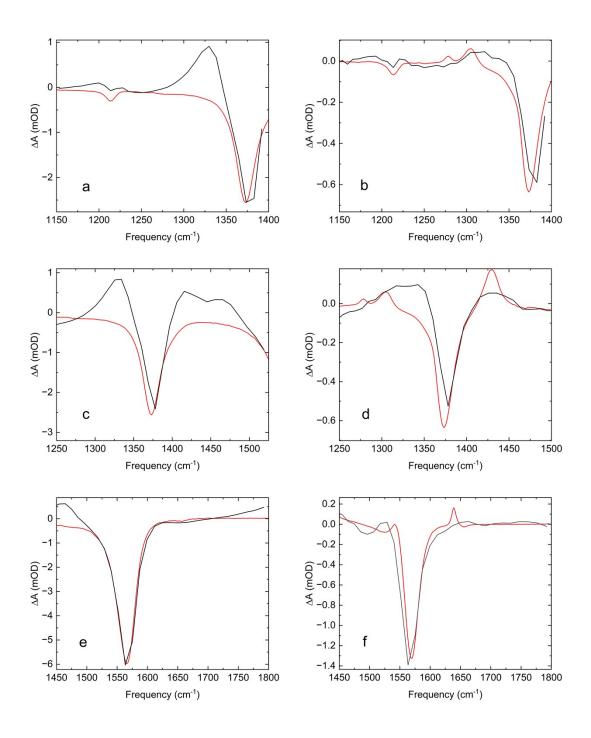


Fig. SI6 The figures (a), (c), and (e) compare the transient absorption recorded in fumarate after 1 ps (black curve) to the inverted steady state absorption spectrum of ground state fumarate (red curve). The figures (b), (d) and (f) compare the transient absorption after 100 ps (black curve) to the weighted sum of the inverted steady state absorption spectrum of ground state fumarate and the positive absorption from acrylate formed after decarboxylation of fumarate, in addition to maleate formed by isomerization of fumarate with yields of 20 % and 7%, respectively (red curve).

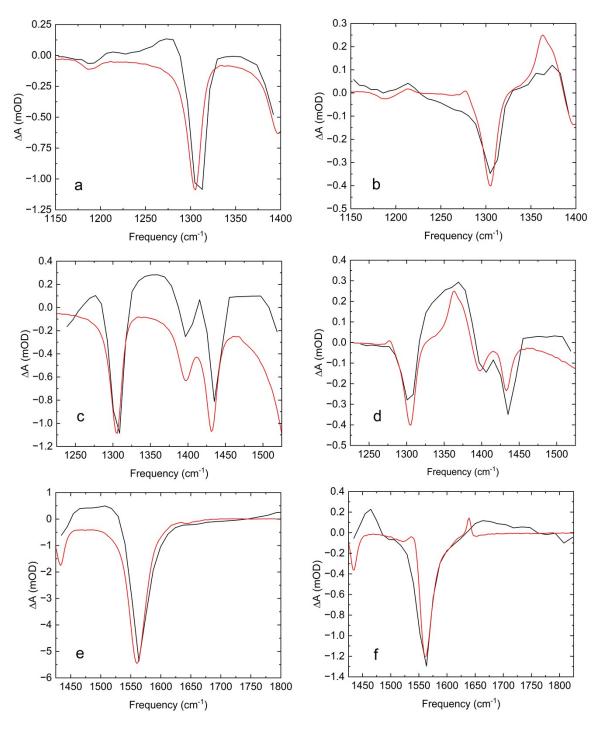


Fig. SI7. The figures (a), (c), and (e) compare the transient absorption recorded in maleate after 1 ps (black curve) to the inverted steady state absorption spectrum of ground state maleate (red curve). The figures (b), (d) and (f) compare the transient absorption after 100 ps (black curve) to the weighted sum of the inverted steady state absorption spectrum of ground state maleate and the positive absorption from acrylate formed after decarboxylation of maleate, in addition to fumarate formed by isomerization of maleate with yields of 20 % and 10%, respectively (red curve).

Table SI1 Calculated transition frequencies and intensities for ground state Fumarate + 4 D₂O compared to 16 measured transition frequencies.

17	Vibration	Harm. Freq.	Anharm. Freq.	Harm. Int.	Anharm. Int.	Measured Freq.
18		(cm ⁻¹)	(cm ⁻¹)	(km/mol)	(km/mol)	(cm ⁻¹)
19	out-of-plane CH bend	1020	1004	59	40	
20	asym. in-plane CH bend	1221	1071	14.2	35	1213
21	sym. in-plane CH bend	1296	1195	0	0	1276
22	asym. comb. sym. CO ₂ str.	1416	1390	1092	512	1373
23	sym. comb. sym. CO ₂ str.	1447	1420	0	0	
24	out-of-phase CO ₂ asym. str.	1620	1597	2	54	
25	in-phase CO ₂ asym. str.	1621	1591	1701	852	1558
26	C=C str.	1745	1696	0	0	1655
$\sim \pi$						

27
28
29
30 Table SI2 Calculated transition frequencies and intensities for ground state Maleate + 4 D₂O compared to measured transition frequencies.

32 33	Vibration	Harm. Freq. (cm ⁻¹)	Anharm. Freq. (cm ⁻¹)	Harm. Int. (km/mol)	Anharm. Int. (km/mol)	Measured Freq. (cm ⁻¹)
34	out-of-plane CH bend	1010	1001	1	1	(em)
35	asym. in-plane CH bend	1214	1183	32	27	1186
36	sym. in-plane CH bend	1342	1314	214	49	1305
37	asym. comb. sym. CO ₂ str.	1445	1417	299	24	1396
38	sym. comb. sym. CO ₂ str.	1472	1442	328	247	1431
39	out-of-phase CO ₂ asym. str.	1615	1587	876	374	
40	in-phase CO ₂ asym. str.	1620	1597	946	275	1558
41	C=C str.	1732	1696	44	7	1655
42						

43 44

Table SI3 Calculated transition frequencies and intensities for lowest excited state Fumarate $^{1}A_{u} + 6$ D₂O compared to observed transient absorption frequencies.

47	Vibration	Harm. Freq.	Anharm. Freq.	Harm. Int.	Measured Freq.
48		(cm ⁻¹)	(cm ⁻¹)	(km/mol)	(cm ⁻¹)
49	C-C str.	1005	1041	7	
50	asym. in-plane CH bend	1188	1559	58	
51	sym. in-plane CH bend	1240	1135	103	
52	asym. CO ₂ str.	1287	1251	78	
53	sym. CO ₂ str.	1400	1359	1326	1406
54	sym. CO_2 str.	1472	1491	1079	1455
55	asym. CO ₂ str.	1561	1571	1266	~1612
56	C=C str.	1715	1678	164	
57					

Table SI4 Calculated transition frequencies and intensities for lowest excited state Maleate ¹A' + 6D₂O.

62 63 64	Vibration
65	sym. in-pl
66	comb. syr
67	comb. asy

63	Vibration	Harm. Freq.	Anharm. Freq.	Harm. Int.
64		(cm ⁻¹)	(cm ⁻¹)	(km/mol)
65	sym. in-plane CH bend	1166	1114	141
66	comb. sym. CO ₂ str.+CH sym. bend	1258	1217	16
67	comb. asym. CO ₂ str.+ sym. CH bend	1375	1335	980
68	asym. comb. sym. CO ₂ str.+in-plane CH bend	1418	1384	40
69	sym. comb. asym CO ₂ str.+in-plane CH bend	1455	1407	561
70	asym. comb. asym. CO ₂ +in-plane CH bend	1489	1437	1892
71	C=C str.	1660	1602	136

74

77

Table SI5 Observed transients 100 ps after photodissociation of fumarate and the transition frequencies of acrylate measured by FTIR (Fig. 2(e) and (f)). Our calculations show that in the spectral region where we applied D₂O as solvent the spectral shift between the two isotopomers is less than 6 cm⁻¹.

81	Vibration	Acrylate Freq.	Observed Freq.
82		(cm ⁻¹)	(cm ⁻¹)
83	C-C str. + in-plane CH bend	1063	
84	in-plane CH bend	1279	
85	in-phase sym. str. CO ₂ sym. CH ₂ bend	1361	~1334
86	out-of-phase sym. CO ₂ str.+ CH ₂ in-plane bend	1431	1425
87	asym. CO_2 str.	1548	~1518
88	C=C str.	1639	1650
89			

Table SI6 Calculated transition frequencies and intensities for $^{-}HC=CHCO_{2}^{-}+2D_{2}O$

))				
96	Harm. Freq.	Anharm. Freq.	Harm. Int.	Anharm. Int.
97	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	(km/mol)
98	1060	1325	48	63
99	1130	1686	3	27
100	1306	1390	36	36
101	1404	1363	690	522
102	1534	1506	503	586
103	1584	1562	360	68
104				

Table SI7 Calculated transition frequencies and intensities for $^{\bullet}HC=CHCO_2^-+2D_2O$

108		1	_	2
109	Harm. Freq.	Anharm. Freq.	Harm. Int. (km/mol)	Anharm. Int.
110	(cm ⁻¹)	(cm ⁻¹)	(km/mol)	(km/mol)
111	1206	1158	41	23
112	1391	1363	547	368
113	1634	1595	722	65
114	1676	1645	166	439
115				

117 Table SI8

118 Lowest triplet excited state + 2 D_2O common to fumarate and maleate.

1	1	9
1	1	Λ

120	Harm. Freq. (cm ⁻¹)	Anharm. Freq. (cm ⁻¹)	Harm. Int. (km/mol)
121	1115	1206	4
122	1239	1273	273
123	1362	1347	23
124	1388	1370	762
125	1419	1390	340
126	1586	1571	1861
127	1589	1572	282
128			

Table SI9 Observed transients 100 ps after photodissociation of maleate and the measured transition frequencies of acrylate measured by FTIR (Fig. 2(e) and (f)). Our calculations show that in the spectral region where we applied D₂O as solvent the spectral shift between the two isotopomers is less than 6 cm⁻¹.

133	Tr		v ·
134	Vibration	Acrylate Freq.	Observed Freq.
135		(cm ⁻¹)	(cm ⁻¹)
136	C-C str. + in-plane CH bend	1063	
137	in-plane CH bend	1279	
138	in-phase sym. str. CO ₂ sym. CH ₂ bend	1361	~1361
139	out-of-phase sym. CO ₂ str.+ CH ₂ in-plane bend	1431	1444
140	asym. CO_2 str.	1548	
141	C=C str.	1639	1650
142			