Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supplementary Information:

Heterogeneous water dynamics in the Hyaluronan-DPPC Interfaces

Anirban Paul*a and Jaydeb Chakrabarti*b

 ^aDepartment of Physics of Complex Systems, S.N. Bose National Centre for Basic Sciences, Block JD, Salt Lake, Kolkata-700098, India, email: anirbanpaulhdb@gmail.com,
^bDepartment of Chemical and Biological Sciences and the Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India, email: jaydeb@bose.res.in

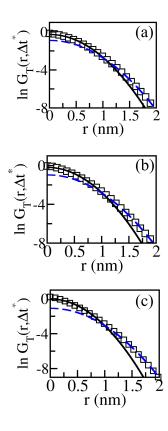


Figure S1: $\ln G_T(r, \Delta t^*)$ vs r plot for (a) $n_{HA5} = 10$, (b) $n_{HA5} = 30$, and (c) $n_{HA5} = 50$ at $\Delta t^* = 2.0$ in the diffusive interface. Solid *black* line implies fitted central Gaussian, broken *blue* line shows fitted Gaussian tail.

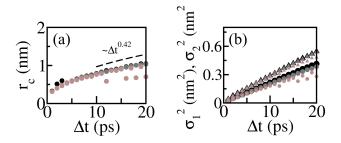


Figure S2: (a) Variation of r_c with time Δt in the diffusive interface for different n_{HA5} . (b) σ_1^2 vs Δt (circles) and σ_2^2 vs Δt (triangles) for different n_{HA5} . Black, gray, and Brown symbols imply $n_{HA5}{=}10{,}30$ and 50 respectively.

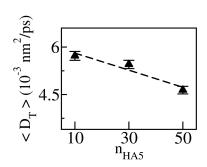


Figure S3: $\langle D_T \rangle$ for different n_{HA5}

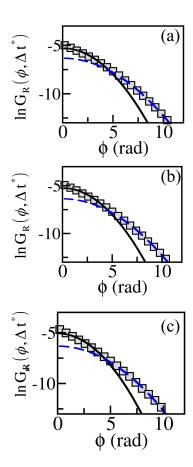


Figure S4: $\ln G_R(\phi, \Delta t^*)$ vs ϕ plot for (a) $n_{HA5} = 10$, (b) $n_{HA5} = 30$, and (c) $n_{HA5} = 50$ at $\Delta t^* = 2.0$ in the diffusive interface. Solid black line implies fitted central Gaussian, broken blue line shows fitted Gaussian tail.

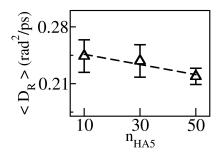


Figure S5: $\langle D_{\rm R} \rangle$ for different $n_{\rm HA5}$

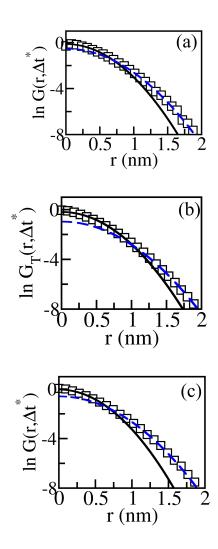


Figure S6: $\ln G_T(r, \Delta t^*)$ vs r plot for (a) N=1, (b) N=5, and (c) N=10 at $\Delta t^* = 2.0$ in the diffusive interface. *Solid* black line implies fitted central Gaussian, *broken* blue line shows fitted Gaussian tail.

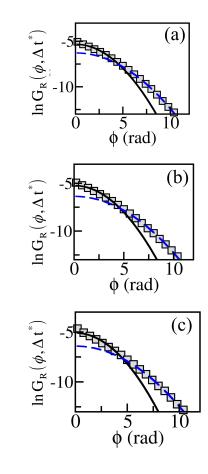


Figure S7: $\ln G_R(\phi, \Delta t^*)$ vs ϕ plot for (a) N=1, (b) N=5, and (c) N=10 at $\Delta t^* = 2.0$ in the diffusive interface. *Solid* black line implies fitted central Gaussian, *broken* blue line shows fitted Gaussian tail.

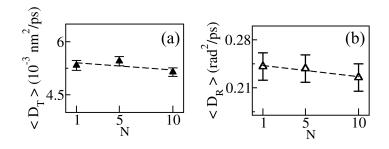


Figure S8: (a) $\langle D_T \rangle$ for different N (b) $\langle D_R \rangle$ for different N.

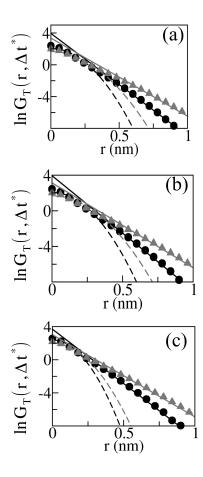


Figure S9: $\ln G_T(r, \Delta t^*)$ vs r plot for (a) $n_{HA5} = 10$, (b) $n_{HA5} = 30$, and (c) $n_{HA5} = 50$ at $\Delta t^* = 0.5$ (*circles*) and $\Delta t^* = 1.0$ (*triangles*) in the subdiffusive hydration layer. *Broken* and *solid* lines show the fitted central Gaussian and fitted exponential tail, respectively.

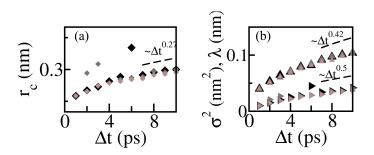


Figure S10: (a) Variation of r_c of $G_T(r, \Delta t)$ with time Δt for different n_{HA5} in the hydration layer. (b) σ^2 vs Δt (\blacktriangleright) and λ vs Δt (\blacktriangle) for different n_{HA5} . Black, gray, and Brown symbols imply $n_{HA5}{=}10{,}30$ and 50 respectively.

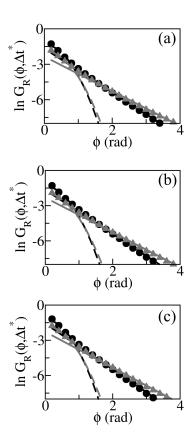


Figure S11: $\ln G_R(\phi, \Delta t^*)$ vs ϕ plot for (a) $n_{HA5}=10$, (b) $n_{HA5}=30$, and (c) $n_{HA5}=50$ at $\Delta t^*=0.5$ (circles) and $\Delta t^*=1.0$ (triangles) in the subdiffusive hydration layer. Broken line shows central Gaussian, solid line implies exponential tail.

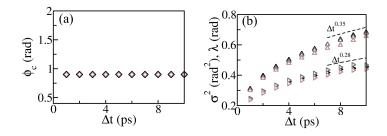


Figure S12: (a) Variation of crossover angle ϕ_c of $G_R(\phi, \Delta t)$ in the hydration layer with time Δt for different n_{HA5} . (b) σ^2 vs Δt (\triangleright) and λ vs Δt (\triangle) of of $G_R(\phi, \Delta t)$ for different n_{HA5} . Black, gray, and Brown symbols imply $n_{HA5}{=}10$, 30 and 50 respectively.

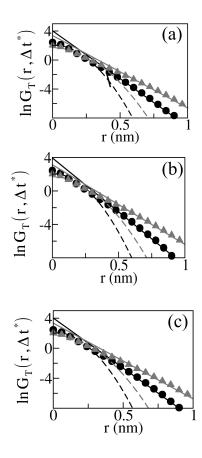


Figure S13: $\ln G_T(r, \Delta t^*)$ vs r plot for (a) N = 1, (b) N = 5, and (c) N = 10 at $\Delta t^* = 0.5$ (circles) and $\Delta t^* = 1.0$ (triangles) in the subdiffusive hydration layer. Broken line shows central Gaussian, solid line implies exponential tail.

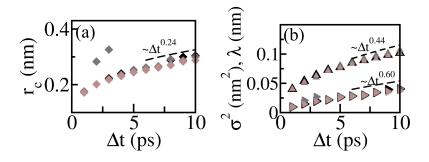


Figure S14: The crossover length r_c of $G_T(r, \Delta t)$ vs time Δt for different N in the hydration layer. (b) σ^2 vs Δt (\blacktriangleright) and λ vs Δt (\blacktriangle) for different N. *Black*, *gray*, and *Brown* symbols imply N=1,5 and 10 respectively.



Figure S15: $\ln G_R(\phi, \Delta t^*)$ vs r plot for (a) N = 1, (b) N = 5, and (c) N = 10 at $\Delta t^* = 0.5$ (circles) and $\Delta t^* = 1.0$ (triangles) in the subdiffusive hydration layer. Broken line shows Gaussian tail, solid line implies exponential tail.

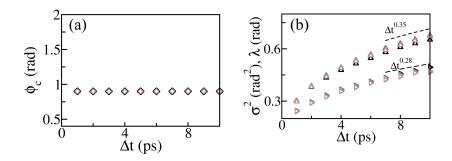


Figure S16: Crossover angle ϕ_c of $G_R(\phi, \Delta t)$ vs time Δt for different N in the hydration layer. (b) σ^2 vs Δt (\triangleright) and λ vs Δt (\triangle) for different N. *Black*, *gray*, and *Brown* symbols imply N=1,5 and 10 respectively.

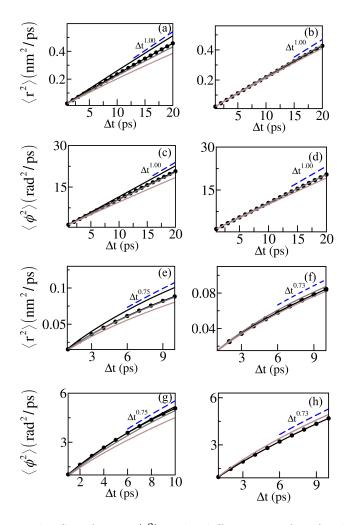


Figure S17: (a)Translational MSD of water $\langle r^2 \rangle$ in the diffusive interface for different n_{HA5} ($n_{HA5}=0$ (solid black line), $n_{HA5}=10$ (dotted black line), $n_{HA5}=30$ (gray line), $n_{HA5}=50$ (brown line) and (b) different N (N=1 (dotted black line), N=5 (gray line), N=10 (brown line).) (c) Rotational MSD of water $\langle \phi^2 \rangle$ in the diffusive interface for different n_{HA5} ($n_{HA5}=0$ (solid black line), $n_{HA5}=10$ (dotted black line), $n_{HA5}=30$ (gray line), $n_{HA5}=50$ (brown line) and (d) different N (N=1 (dotted black line), N=5 (gray line), N=10 (brown line)). (e)Translational MSD of water $\langle r^2 \rangle$ in the subdiffusive hydration layer for different n_{HA5} and (f) different N. Same linetypes are used as (a)-(b). (g) Rotational MSD of water $\langle \phi^2 \rangle$ in the subdiffusive hydration layer for different n_{HA5} and (h) different N. Same linetypes are used as (c)-(d).