

Supporting Information

Hole transfer dynamics between CsPbBr_3 PNC and *p*-phenylene diisothiocyanate

Sourav Mandal^a, Subhadip Giri^a, Suraj Barman^a, Sourav Nandi^a, Shashanka Shekhar Samanta^a, Sayan Pradhan^b, Ayon Jyoti Karmakar^b, Prasanta Kumar Dutta^b and Ajay Misra*^a

^aDepartment of Chemistry, Vidyasagar University, West Bengal 721102, India

^bDepartment of Physics, Indian Institute of Technology, Kharagpur -721302, India

Email: ajay@mail.vidyasagar.ac.in

Content	Page No.
Quantum Yield Measurement.	S3
Time-Resolved Photoluminescence.	S4
Fig S1: HRTEM images (a,b) and SAED patterns(c) of CsPbBr_3 NC with scale bar of 10nm (a) 20 nm (b) respectively	S4
Fig S2: TEM size distribution curve	S4
Fig S3: Tauc plot	S5
Fig S4: Fluorescence spectra of PNCs solution after dilution with Toluene solvent.	S5
Fig S5: Figure S4. DFT optimized geometry and HOMO-LUMO gap of PDNCS using TPSSTPSS/CCPVDZ level of theory.	S6
Fig S6: 2D pseudo-colour TA plot of (a) CsPbBr_3 NCs and (b) CsPbBr_3 -PDNCS system at 440 nm pump excitation.	S6
Fig S7: Plots of PLQY vs λ_{ex} for a given concentration	S8
Table S1: Quenching efficiency	S9
Table S2: Photoinduced hole transfer parameters	S9
Table S3: Different values of PLQY as a function of λ_{ex} and [PDNCS] for PNC.	S10
Table S4: PLQY without PDNCS and with PDNCS (29 μM)	S11
References.	S11

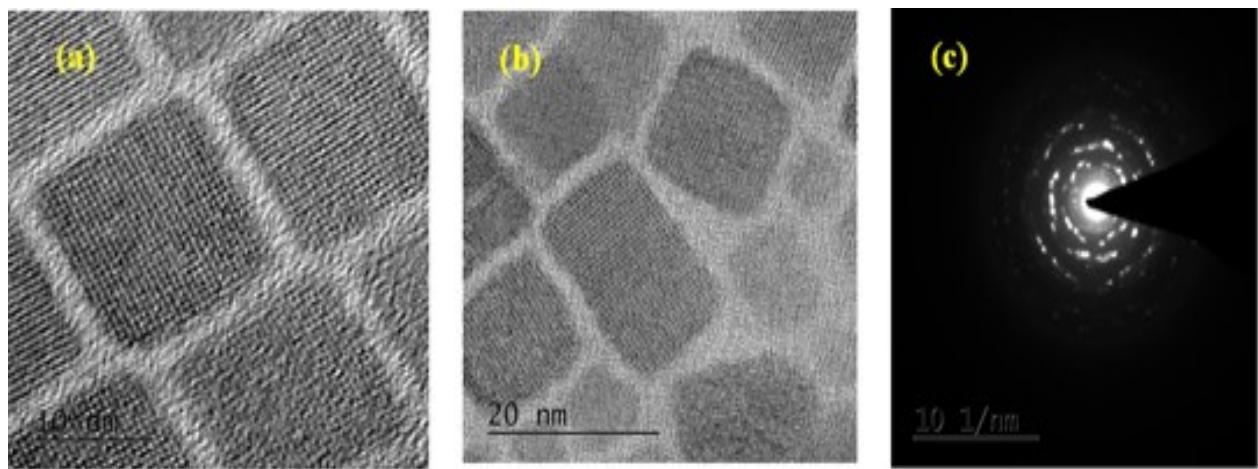
Photo Luminescence Quantum Yield (PLQY) Measurement.

The PLQY of PNCs were measured using Coumarin 153 (C153) as reference standard (absolute QY 58% in ethanol). Samples for PLQY measurements were prepared by diluting the colloidal dispersion of PNCs with anhydrous toluene keeping the optical density of both the C153 and the PNCs below 0.1 at 420 nm. The absorption and PL emission spectra were measured using the instruments mentioned in the manuscript. PLQY at various excitation wavelength and concentration of PDNCS were calculated using the following equation.

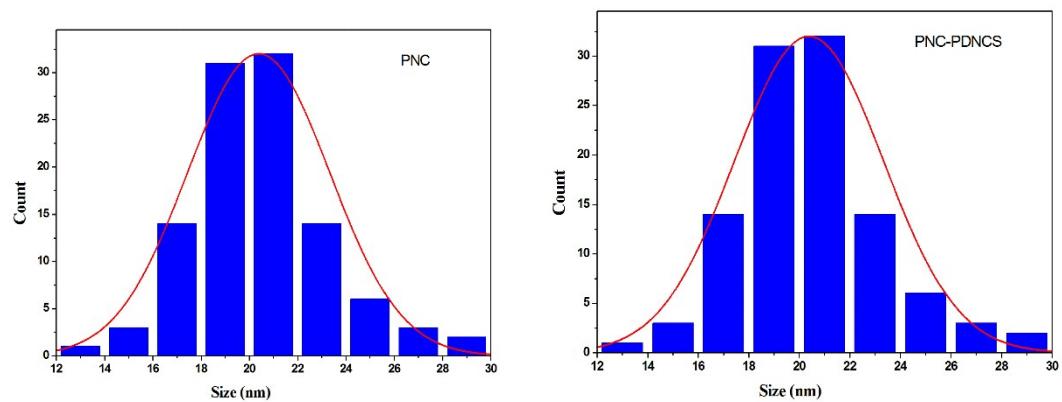
$$PLQY = Q_R \times \frac{OD_R}{OD} \times \frac{I}{I_R} \times \frac{\eta^2}{\eta_R^2}$$

where PLQY, OD, I and η represents photo luminescence quantum yield, optical density, integrated intensity, and refractive index of the medium respectively. Subscript "R" refers to the reference (here C153).

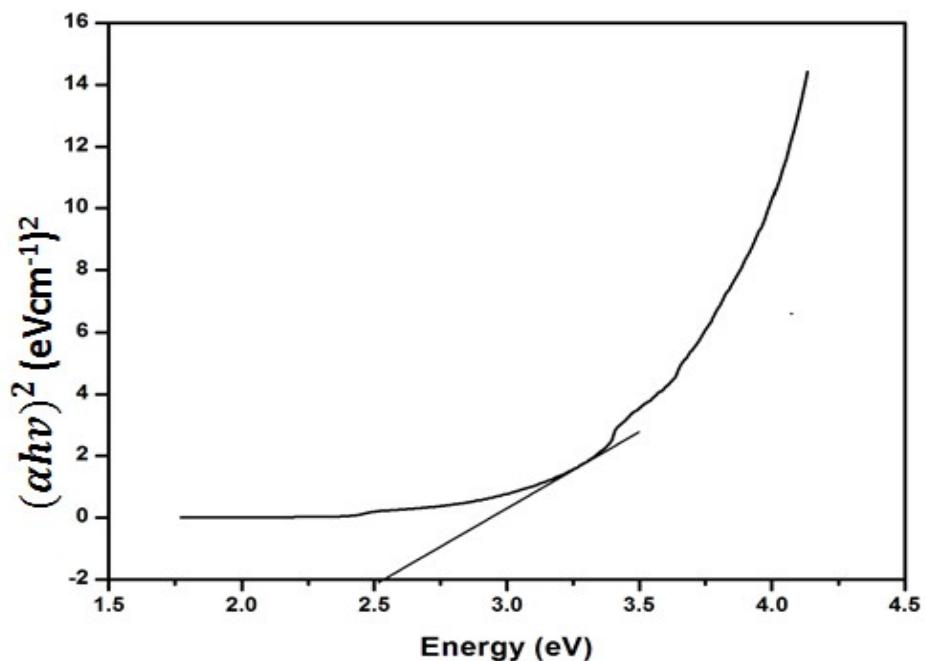
Time-Resolved Photoluminescence.

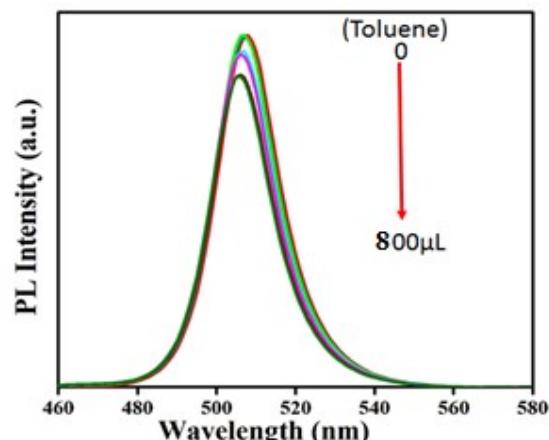

PL lifetime analyses were conducted at room temperature using a HORIBA Delta Flex fluorescence lifetime measurement setup spectrometer using a 372 nm pulsed laser diode excitation. The PL decay curve of PNCs in absence and presence of PDNCS is shown in Figure 3 and were well-fitted using the following bi-exponential fitting equation.

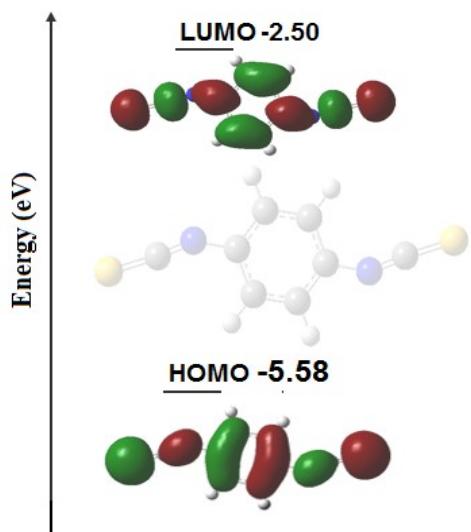
$$I(t) = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right) + C$$

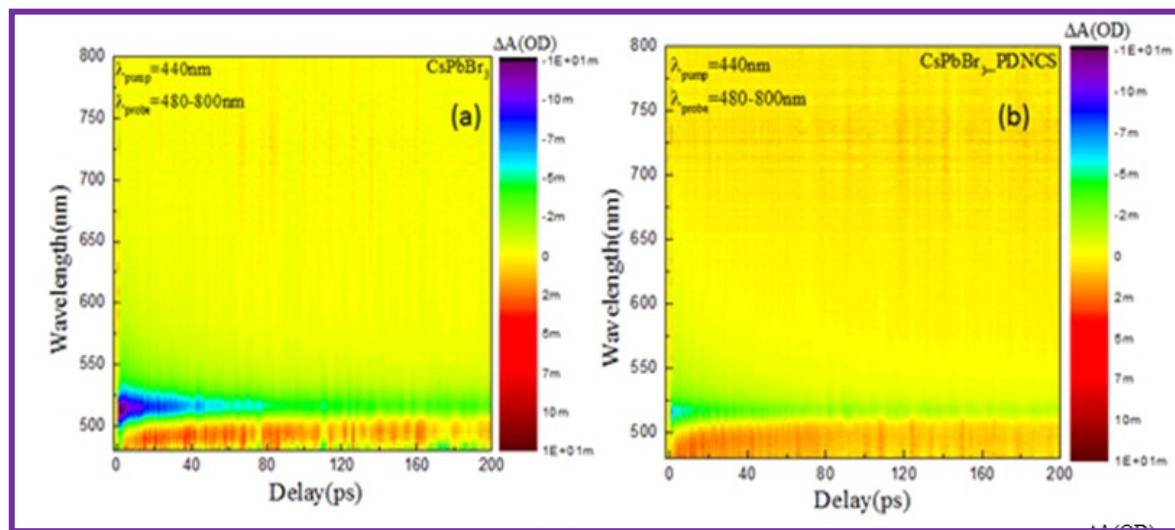

Average PL lifetime (τ_{avg}) was calculated using the following equation.

$$\tau_{avg} = \frac{\alpha_1 \tau_1^2 + \alpha_2 \tau_2^2}{\alpha_1 \tau_1 + \alpha_2 \tau_2}$$


where α , and τ are the pre-exponential factor and PL lifetime of each component respectively.


Fig S1: HRTEM images (a,b) and SAED patterns(c) of CsPbBr_3 NC with scale bar of 10nm
 (a) 20 nm (b) respectively


Fig S2: Bar diagram of the average size distribution of CsPbBr_3 nano crystals obtained in the TEM study.


Fig S3: Tauc plot to calculate the band gap of the CsPbBr_3 PNC.

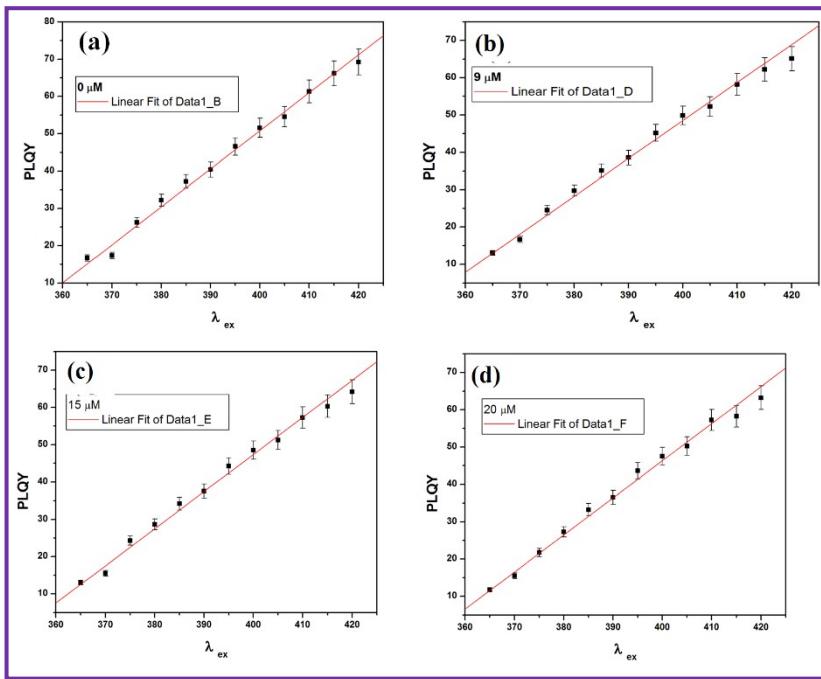

Fig S4: Photo luminescence spectra of CsPbBr_3 nanocrystals solution in toluene with addition of excess amount of solvent (toluene) corresponding up to the maximum volume of PDNCS added during the present study.

Fig S5: DFT optimized geometry and HOMO-LUMO gap of PDNCS using TPSSTPSS/CCPVDZ level of theory.

Fig S6: 2D pseudo-colour TA plot of (a) CsPbBr_3 PNCs and (b) $\text{CsPbBr}_3\text{-PDNCS}$ system at 440 nm pump excitation

Fig S7: Plots of PLQY vs λ_{ex} (nm) for a given concentration (a) 0mM, (b) 5mM, (c) 9 mM, (d) 15mM, (e) 20 mM, (f) 25mM

Table S1: PLQY (%) CsPbBr₃ PNC in presence various concentration of PDNCS ($\lambda_{ex} = 420\text{nm}$ and $\lambda_{em} = 509\text{ nm}$)

PDNCS (mM)	Quenching Efficiency (%)
0.14	15.80
0.28	21.95
0.42	35.18
0.56	50.18
0.70	59.94
0.84	69.62
0.98	75.09
1.11	81.81
1.24	85.80
1.34	89.06

Table S2: Stern-Volmer quenching constant (K_{sv}), average PL lifetime (τ_{avs}), PL quenching constant (K_q) and hole transfer constant (K_{ht}) of CsPbBr_3 PNC in presence of quencher, PDNCS.

Sample	$K_{sv}(\text{mM}^{-1})$	$\tau_{avs}(\text{ns})$	$K_q (\text{M}^{-1}\text{ns}^{-1})$	Hole transfer constant (K_{ht}) (s^{-1})
CsPbBr_3	2.84	6.67	425.78	31.5×10^7

Table S3: Calculated PLQY as a function of λ_{ex} and [PDNCS] for CsPbBr_3 PNC.

.(a)

[PDNCS] mM	λ_{ex} (nm)	PLQY
0	365	16.675
	370	17.39
	375	26.269
	380	32.2
	385	37.256
	390	40.45
	395	46.562
	400	51.587
	405	54.562
	410	61.325
	415	66.211
	420	69.232

(b)

[PDNCS] mM	λ_{ex} (nm)	PLQY
5	365	14.301
	370	17.02
	375	25.133
	380	31.365
	385	35.265
	390	39.48
	395	45.521
	400	50.205
	405	53.265
	410	60.25
	415	65.002
	420	68.786

(c)

[PDNCS] mM	λ_{ex} (nm)	PLQY
9	365	13.071
	370	16.652
	375	24.547
	380	29.773
	385	35.2
	390	38.569
	395	45.2
	400	49.865
	405	52.25
	410	62.211
	415	58.202
	420	65.106

(d)

(e)

(f)

[PDNCS] mM	λ_{ex} (nm)	PLQY	[PDNCS] mM	λ_{ex} (nm)	PLQY	[PDNCS] mM	λ_{ex} (nm)	PLQY
(d)	365	13.04	20	365	11.728	25	365	9.851
	370	15.523		370	15.5		370	15.26
	375	24.307		375	21.771		375	19.725
	380	28.665		380	27.3		380	26.658
	385	34.23		385	33.265		385	32.25
	390	37.547		390	36.524		390	35.302
	395	44.265		395	43.65		395	42.15
	400	48.56		400	47.554		400	46.522
	405	51.23		405	50.258		405	48.44
	410	57.266		410	57.254		410	55.1
	415	60.315		415	58.214		415	57.395
	420	64.222		420	63.225		420	61.428

Table S4: PLQY without PDNCS and with PDNCS (29mM)

λ_{ex} (nm)	PLQY (0 mM)	PLQY (29mM)	Percentage decrease of PLQY in presence of PDNCS
365	16.6	8.3	50
370	17.3	13.9	20
375	26.2	17.3	33.7
380	32.2	25.5	20.6
385	37.2	31.1	16.3
390	40.4	35	13.3
395	46.5	41.5	10.8
400	51.5	45.5	11.6
405	54.5	47.9	12
410	61.3	52.1	14.9
415	66.2	55.2	16.5
420	69.2	58.3	15.6

References.

(1) Mandal, S., Mukherjee, S., De, C. K., Roy, D., Ghosh, S., & Mandal, P. K. (2020). Extent of shallow/deep trap states beyond the conduction band minimum in defect-tolerant CsPbBr_3 perovskite quantum dot: control over the degree of charge carrier recombination. *The Journal of Physical Chemistry Letters*, 11(5), 1702-1707.

(2) Abiodun, S. L., Pellechia, P. J., & Greytak, A. B. (2021). Effective purification of CsPbBr_3 nanocrystals with high quantum yield and high colloidal stability via gel permeation chromatography. *The Journal of Physical Chemistry C*, 125(6), 3463-3471.

(3) Venkateswarlu, D., Swetha, T., Akhil, S., Palabathuni, M., Mishra, N., & Singh, S. P. (2023). Surface engineering of CsPbBr_3 perovskite nanocrystals: hole transfer dynamics and enhanced photocurrent response using a novel organic molecule. *Materials Advances*, 4(8), 1935-1940.

(4) Dhanabalan, B., Castelli, A., Palei, M., Spirito, D., Manna, L., Krahne, R., & Arciniegas, M. (2019). Simple fabrication of layered halide perovskite platelets and enhanced photoluminescence from mechanically exfoliated flakes. *Nanoscale*, 11(17), 8334-8342.