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S1 Snapshots from AIMD trajectories

Snapshots are presented of the Au-PLY-Au structure, taken every 1,000 fs from the 300 K,

500 K, and 700 K AIMD trajectories.
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Figure S1: Structural snapshots of the 300 K AIMD trajectory taken at 1,000 fs intervals.
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Figure S2: Structural snapshots of the 500 K AIMD trajectory taken at 1,000 fs intervals.
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Figure S3: Structural snapshots of the 700 K AIMD trajectory taken at 1,000 fs intervals.
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S2 Transmission peak assignments via scattering state
calculations

Scattering state calculations are performed at the energies of resonances (peaks) in the trans-
mission spectra of PLY. Eigenfunctions of the scattering states help identify the molecular
orbital of PLY responsible for each of the resonances in the T'(E) function. Scattering states
are not expected to exactly match the eigenfunction of the molecular orbitals in isolated PLY,
however nodes and antinodes are expected to largely match in the two sets of eigenfunctions.
The peak in the § transmission spectrum at —0.02 eV could not be directly assigned to a
molecular orbital, as seen in Fig. S6. Thirty-three scattering states were generated at this
energy; however, none of the scattering states matched the eigenfunction of the isolated
SOMO. Based on the fact that the HOMO—1 orbital is responsible for the § transmission
peak at &~ —0.5 eV, combined with the similarity of the § transmission peak at —0.02 eV to
the (a spectrum) SUMO peak at =~ 0.5 eV, and comparison to previous literature,! we con-
clude that orbital mixing of the HOMO and SOMO levels cause the scattering state results
at —0.02 eV. Furthermore, these facts give us high confidence that the peak at —0.02 eV is
indeed caused by the SOMO peak.
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Figure S4: (a) T'(F) spectra showing the energy at which the scattering state calculation
was performed (purple line). (b) Eigenfunction of the PLY 5 HOMO-—1 molecular or-
bital. (c) Scattering state eigenfunction plotted for a scattering state at the energy indicated
by the purple line in (a). The isosurface value was set to 0.005 a.u. Top right: energy of the
HOMO-—1 molecular orbital in isolated PLY, calculated using the B3LYP functional and a
6-311++G(d,p) basis set.

S6



@ —— ()

HOMO
a:-6.20 eV
B:-6.03 eV
3104 —a spin
—( spin
---Ep
10 I ) i ) —Scattering State Energy
(c)_ S R | HOMO: -6.13 eV
o
o o
o o
o o
o o
o o
o (&
o o
o [
o o
o [
o

Figure S5: (a) T(E) spectra showing the energy at which the scattering state calcula-
tion was performed (purple line). (b) Eigenfunction of the PLY o HOMO molecular or-
bital. (c) Scattering state eigenfunction plotted for a scattering state at the energy indicated
by the purple line in (a). The isosurface value was set to 0.02 a.u. Top right: energy of
the HOMO molecular orbital in isolated PLY, calculated using the B3LYP functional and a
6-311++G(d,p) basis set.
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Figure S6: (a) T'(E) spectra showing the energy at which the scattering state calculation
was performed (purple line). (b) Eigenfunction of the PLY 5 SOMO molecular orbital. (c)
Scattering state eigenfunction plotted for a scattering state at the energy indicated by the
purple line in (a). The isosurface value was set to 0.05 a.u. Top right: energy of the
SOMO molecular orbital in isolated PLY, calculated using the B3LYP functional and a 6-
311++G(d,p) basis set.
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Figure S7: (a) T(E) spectra showing the energy at which the scattering state calculation
was performed (purple line). (b) Eigenfunction of the PLY o SUMO molecular orbital. (c)
Scattering state eigenfunction plotted for a scattering state at the energy indicated by the
purple line in (a). The isosurface value was set to 0.05 a.u. Top right: energy of the
SUMO molecular orbital in isolated PLY, calculated using the B3LYP functional and a 6-
311++4G(d,p) basis set.
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S3 T(F) spectra around SFE dips in the 300 K, 500 K,
and 700 K trajectories

Transmission spectra are plotted for points around SFE dips in the 300 K, 500 K, and 700 K

AIMD trajectories.
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Figure S8: (a) @ and (b) f transmission spectra from around the 300 K AIMD trajectory
taken from around the 200 fs SFE dip.
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Figure S9: (a) a and (b) / transmission spectra from around the 300 K AIMD trajectory
taken from around the 2,300 fs SFE dip.

S11



—1800 fs

—1900 fs
1 | ——2000 fs
107§ ---Ep ;
= A Integration Window|’
= ]
‘® 1072 i
L2
=
e
@ 107
| .
=

(o

10%¢ :
F —1800 fs
—1900 fs
1 I ~=2000 fs
10° s .EF E
] Integration Window/]
S J
? 107
7 s
@ 107 E
| -l ]
= :
10'4 = i -
10-5 | L | 1 E | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
E-E_(eV)

Figure S10: (a) o and (b) 8 transmission spectra from around the 500 K AIMD trajectory
taken from around the 1,900 fs SFE dip.

S12



—4000 fs

—4100 fs
1 ) 4200 fs
107 A .. NV ; i —4300 fs
- r : | '“EF 1
S I l ; g Integration Window|
‘? 107 ; \l | g
o ) : :
=
e
@ 1073
—
I_
i
1 0-5 | | 1 E 1 | |
-2 1.5 1 -0.5 0 0.5 1 1.5 2
(b) E - EF(eV)
g B spin
10 T T T T T T T
! —4000 fs
; —4100 fs
4200 fs
—4300 fs
e==Bp 1
Integration Window(T

Transmission

Figure S11: (a) o and (b) f transmission spectra from around the 500 K AIMD trajectory
taken from around the 4,100 fs SFE dip.
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Figure S12: (a) o and (b) f transmission spectra from around the 700 K AIMD trajectory
taken from around the 600 fs SFE dip.
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Figure S13: (a) a and (b) f transmission spectra from the 700 K AIMD trajectory taken
from the 1,300 fs, 1,400 fs, and 1,500 fs timesteps in the trajectory.
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Figure S14: (a) a and (b) f transmission spectra from the 700 K AIMD trajectory taken
from around the 2,100 fs SFE dip.
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Figure S15: (a) a and (b) f transmission spectra from the 700 K AIMD trajectory taken
from around the 4,100 fs SFE dip.
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S4 Analyses performed on conductance and spin filter

efficiency data
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Figure S16: Regression analysis between SFE and conductance with SFE plotted on a linear
x-axis and conductance on an (a) linear and (b) logarithmic y-axis. This analysis consists
of all spin and charge transport data generated via AIMD trajectories.
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Figure S17: Regression analysis between (a) conductance and (b) SFE against the sum of
dihedral sin? products around the SFE dips at 200 and 2300 fs in the 300 K AIMD trajectory.
Correlation does exist between the sum of dihedral sin? products and conductance, although
SFE is not strongly correlated to the dihedral values.
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Figure S18: Regression analysis between excess charge on the molecule and (a) SFE, (b) con-
ductance on a linear scale, and (c¢) conductance on a logarithmic scale, with these data coming
from the first 3300 fs of the 300 K AIMD trajectory. Strong correlation between charge and
SFE/conductance data




S5 DZP calculations performed on isolated PLY

PLY-2SH
0 : ' ;

< | 5
CFE -1.49 eV E -1.42eV 1.62eV E -1.55 eV 1
> ! |
o : :
o) ' |
c 45 A -3.64eV o -3.74 eV .
L -4.26 &V : -4.35 eV E
© : :
= . .
O 6+ ' ' y
5 !  [=Lumo

: | — SUMO/SOMO

: | HOMO

ANO-RCC-DZP & ANO-RCC-DZP 3  6-311++G(d,p) o  6-311++G(d,p) 3
Basis Set and Orbital Spin

Figure S19: Data are presented comparing the HOMO, SOMO, SUMO, and LUMO molecu-
lar orbital energies calculated using the ANO-RCC-DZP? basis set and the 6-311++G(d,p)
basis set. Both calculations were performed using the PBE exchange correlation functional.
The orbital splitting values for HOMO, SOMO-SUMO, and LUMO were 0.11 eV, 0.61 eV,
and 0.07 eV, respectively, for both the ANO-RCC-DZP and 6-311++G(d,p) basis sets, al-
though the exact energies differ between the two basis sets.

S20



References

(1) Smeu, M.; Monti, O.; McGrath, D. Phenalenyls as tunable excellent molecular conduc-
tors and switchable spin filters. Phys. Chem. Chem. Phys. 2021, 23, 24106-24110.

(2) Roos, B.; Lindh, R.; Malmqvist, P.; Veryazov, V.; Widmark, P.; Borin, A. New Rela-
tivistic Atomic Natural Orbital Basis Sets for Lanthanide Atoms with Applications to
the Ce Diatom and LuF3. J. Phys. Chem. A 2008, 112, 11431-11435.

521



