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Table S1. Dihedral angles between the donor and acceptor groups and the naphthalene bridge (64 and
0.) for DMA-Nap-TRZ in gas and solvent phases.

Phase 04 0a
Gas 89.74° 89.67°

DMSO 89.74° 89.72°

Toluene 89.84° 89.8°
AP 0.1° 0.13°

b Differences between maximum and minimum values for each 0.

Table S2. Hole-particle centroid distance (D), overlap (S,), and separation (¢) indices for the first five
excited states of the studied molecules in DMSO solvent.

Molecules Excited states D A) S, (au) t(A)

Si 2.978 0.249 1.888

Sy 2.919 0.330 1.840

DMA-Nap-TRZ S3 3.380 0.211 1.986
S4 0.718 0.721 -1.561

Ss 0.249 0.555 -0.837

Si 0.074 0.620 -1.269

Sy 0.766 0.765 -2.349

DMA-AzoNap S; 4735 0.202 2.686
S4 0.831 0.756 -0.687

Si 0.057 0.611 -1.197

Sy 0.805 0.768 -2.375

DMA-AzoNap-TRZ Ss3 4414 0.229 2.277
S4 2.784 0.254 1.581

Ss 2.909 0.334 1.761



Table S3. Hole-particle centroid distance (D), overlap (S,), and separation () indices for the first five
excited states of the studied molecules in toluene solvent.

Molecules Excited states D A) S, (au) t (A)

S1 2.978 0.249 1.888

Sa 2.919 0.330 1.840

DMA-Nap-TRZ S3 3.380 0.211 1.986
Sa 0.718 0.721 -1.561

Ss 0.249 0.555 -0.837
Si 0.069 0.618 -1.240
N 0.069 0.618 -1.240

DMA-AzoNap S5 4.561 0.262 2235
Sa 0.838 0.753 -0.710

Si 0.054 0.609 -1.174

Sy 0.273 0.740 -3.063

DMA-AzoNap-TRZ S3 3.699 0.420 0.736
Sa 2.824 0.2542 1.624

Ss 2911 0.333 1.761

Table S4. Syrs(X 1073%su) for DMA-AzoNap and DMA-AzoNap-TRZ at 1064 and 1340 nm in
various solvents. The percent change indicates the enhancement in HRS intensity upon TRZ
substitution.

Percent
Solvent DMA-AzoNap DMA-AzoNap-TRZ change (%)
frr 76.48 85.83 10.9
HRS 52.52 57.59 8.8
frr 72.25 81.61 115
Ethanol
fria 49.91 55.11 9.4
fr 70.68 79.07 10.6
THF 1340
frits 49.02 53.62 8.6
1 fr 65.73 71.9 8.6
Toluene
fria 46.1 4935 6.6
fr 34.85 37.28 6.5
Gas
frrt 26.14 27.51 5.0



Table S5. y (X 10™36esu) for DMA-AzoNap and DMA-AzoNap-TRZ at 1064 and 1340 nm in various
solvents. The percent change indicates the enhancement in HRS intensity upon TRZ substitution.

Solvent DMA-AzoNap DMA-AzoNap-TRZ chzfll;:?‘;) )
Y100 (w) 444.94 553.45 19.6
Y1 2w) 867.97 1102.95 213
PMSO Y340 (w) 396.72 493.13 19.6
YB3 Qw) 528.01 667.81 20.9
Y100 (w) 343.82 436.15 21.2
Y1 2w) 742.59 948.22 21.7
Toluene Y3 (w) 307.71 389.9 21.1
YB3 Qw) 461.69 588.17 215

Table S6. Photophysical properties and excited state characteristics of the designed molecules in
toluene solvent at CAM-B3LYP/6-311G(d) level of theory.

Excited Osc. Ener Transitio

States Wavelength (nm) Strength (f) (eV?y n Type
Si 356.04 0.0002 3.4823 TSCT
S> 324.45 0.0429 3.8213 TSCT
DMA-Nap-TRZ S3 321.56 0.0001 3.8557 TBCT
S4 275.89 0.1333 4.494 HLCT
Ss 275.12 0.0119 4.5065 HLCT

Sy 445.82 0.0255 2.7811 LE

Sz 373.68 1.1448 3.3179 LE

DMA-AzoNap

S3 370.41 0.0376 3.3472 TBCT

S4 290.20 0.0308 4.2724 LE

Sy 447.81 0.0137 2.7687 LE

Sz 378.30 1.1086 3.2774 LE
DMA-AzoNap-TRZ S3 377.09 0.2056 3.2879 TBCT
S4 352.90 0.0001 3.5133 TSCT
Ss 320.71 0.0412 3.8659 TSCT
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Figure S1. Natural Transition Orbitals (NTOs) for the first five excited states (S - Ss)

of DMA-Nap-TRZ in DMSO solvent.
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Figure S2. Natural Transition Orbitals (NTOs) for the first five excited states (S; - Ss)

of DMA-AzoNap in DMSO solvent.
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Figure S3. Natural Transition Orbitals (NTOs) for the first five excited states (S; - Ss)

of DMA-AzoNap-TRZ in DMSO solvent.
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Figure S4. Excited state energy levels of the designed molecules.
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Figure S5. The IGMH isosurfaces for molecules a) DMA-Nap-TRZ, and b) DMA-AzoNap-
TRZ.
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Figure S6. Percentage contributions of charge-transfer (CT) and local-excitation (LE) character
for the excited states of DMA-Nap-TRZ in toluene solvent.
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Figure S7. Percentage contributions of charge-transfer (CT) and local-excitation (LE) character
for the excited states of DMA-AzoNap in toluene solvent.
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Figure S8. Percentage contributions of charge-transfer (CT) and local-excitation (LE) character
for the excited states of DM A-AzoNap-TRZ in toluene solvent.
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Figure S9. Percentage contributions of Through-Space Charge Transfer (TSCT) and Through-
Bond Charge Transfer (TBCT) character for the excited states of DMA-Nap-TRZ in toluene
solvent.
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Figure S10. Percentage contributions of Through-Space Charge Transfer (TSCT) and Through-
Bond Charge Transfer (TBCT) character for the excited states of DMA-AzoNap-TRZ in toluene
solvent.
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Figure S11. Variation of hyper-Rayleigh scattering (HRS) intensity with polarization angle (V) for
DMA-AzoNap at excitation wavelengths of 1064 and 1340 nm in (a) DMSO, (b) ethanol, (c) THF,
and (d) toluene.
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Figure S12. Variation of hyper-Rayleigh scattering (HRS) intensity with polarization angle (V') for
DMA-AzoNap-TRZ at excitation wavelengths of 1064 and 1340 nm in (a) DMSO, (b) ethanol, (c)
THEF, and (d) toluene.
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Figure S13: Calculated absorption spectra for the designed molecules in toluene solvent at CAM-
B3LYP/6-311G(d) level of theory.

Section S1. Additional Computational Details

All quantum chemical calculations were carried out using the Gaussian 16 software package.! The MO06-
2X density functional was employed in combination with the 6-311G(d) basis set for geometry compu-
tations.? The UltraFine integration grid (a pruned grid consisting of 99 radial shells and 590 angular
points per atom) was used for the numerical evaluation of the DFT integrals.

Full geometry optimizations were performed without any symmetry constraints, and the nature of each
stationary point was verified through frequency calculations to ensure the absence of imaginary frequen-
cies. Geometry convergence was achieved when all of the following criteria were satisfied simultaneously:

e Maximum force: < 0.00045 Hartree/Bohr

e Root-mean-square (RMS) force: < 0.0003 Hartree/Bohr
e Maximum displacement: < 0.0018 Bohr

e RMS displacement: < 0.0012 Bohr

The self-consistent field (SCF) procedure was considered converged when the change in total electronic
energy between successive cycles was less than 10-® Hartree, which corresponds to the default convergence
threshold in Gaussian 16.

The (Burs) can be expressed in terms of (3% ,,) and (8% ). The corresponding relations are given
below, where symmetry conditions are neglected.??

1 Z,Y,2 4 Z,Y,2 ) ZT,Y,2 4 Z,Y,%
(B722) = Z Becc+ 35 Z Becn + 35 D BeccBem + 32 > BuccBeen
¢#n ¢#n
Z,Y,z Z,Y,% Z,Y,z
Z BecePame + o= 35 Z Bngg + Z BecnPnee
C;ﬁn C#nsﬁﬁ s1
1 T,Y,% 4 Ty, 9 T,Y,2 ( )
105 > BuccBee + 105 > BecBeen + 210 > B
CF#NF#E C#N#E C#NFE
T,Y,z
— > BeneBuee
C#NFAE
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1 T,Y,2 z,Y,z z,Y,2 z,Y,%

4 2 8
<BZXX 35 Z BCCC + 05 105 Z BecePem — 35 Z T 105 Z ﬁ“n

¢#n
3 z,Y,z 9 T,Y,2 1 T,Y,2
35 Z BCUTI 35 Z BeenBnee “' Z BenmBeee
¢#n C?ﬁnsﬁ&

2 T,Y,% x,Y,z x,Y,z (82)
~ 105 > BeceBome — 105 Z BecnPnee + 32 Z Bee

(Fn#é C#Fn#E C#n#

T,Y,2
105 > BengPuce

C#NFE

where ZZZ and ZXX refer to the laboratory coordinate system, and z, y, and z correspond to the
molecular coordinates. The indices (, 1, and £ represent the molecular frame Cartesian axes x, y, and z,
respectively.

Section S2. Frontier Molecular Orbitals (FMOs) of DMA, Nap,
and TRZ

The molecular w-bridge is a decisive factor that actively governs the intramolecular charge transfer (ICT)
and resulting nonlinear optical (NLO) properties, serving as far more than a passive spacer. For efficient,
long-range charge transfer to occur, the FMOs of the bridge must be appropriately matched with those
of the donor (D) and acceptor (A). The optimal design requires the bridge’s HOMO and LUMO energy
levels to lie energetically between their counterparts in the donor and acceptor, following the specific
order B2 > EH > FHl and E5 > EL > EL. This specific alignment allows the bridge’s orbitals to have
appropriate involvement by mixing with the donor and acceptor orbitals to form the overall FMOs of the
complete D-m-A system. The bridge’s specific composition, conjugation length, and orientation are all
critical factors that modulate these electronic properties.® Applying this principle, FMO analysis of the
individual DMA, Nap, and TRZ fragments confirmed that our system meets this key requirement. As
depicted in the FMO diagram (Figure S14), the HOMO and LUMO energy levels of the Nap bridge are
ideally situated between those of the DMA donor and the TRZ acceptor, providing an optimal energetic
pathway for efficient intramolecular charge transfer.
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Figure S14: FMOs of the DMA, Nap and TRZ calculated at B3LYP/6-311G(d) level of theory.
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