Supporting information for

Prediction of 2D heterostructure GaSe/YGaS₃ for highly efficient photocatalytic water splitting

Chao He,^{1,*} Hui-Tang Liu,¹ Qinghua Lv,¹ Bao-Hua Tan,¹ Bei Peng,^{2,*} Hao Wang,² Jun-Hui Yuan,³ and Jiafu Wang,³

¹National "111 Research Center" Microelectronics and Integrated Circuits, School of

Science, Hubei University of Technology, Wuhan 430068, China

²Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

³School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070,

China

${}^*Corresponding\,Author\,$

E-mail: <u>hechao@hbut.edu.cn</u> (C. He); <u>pbei1987@163.com</u> (B. Peng)

Note 1. Details for solar-to-hydrogen (STH) efficiency calculation.

The STH efficiency is evaluated using the following equation[1]:

$$\eta_{abs} = \frac{\int_{Eg}^{\infty} P(\hbar\omega) d(\hbar\omega)}{\int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega)} \quad (1)$$

$$\eta_{cu} = \frac{{}^{\Delta G} \int_{E}^{\infty} \frac{P(\hbar \omega)}{\hbar \omega} d(\hbar \omega)}{\int_{E_g}^{\infty} P(\hbar \omega) d(\hbar \omega)} \ (2)$$

$$\eta_{\text{STH}} = \eta_{\text{abs}} \times \eta_{\text{cu}}$$
 (3)

$$\eta'_{STH} = \eta_{STH} \times \frac{\int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega)}{\int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega) + \Delta\Phi \int_{E_g}^{\infty} \frac{P(\hbar\omega)}{\hbar\omega} d(\hbar\omega)} \quad (4)$$

where $P(\hbar\omega)$ represents the solar energy flux (AM1.5G) at a given photon energy ($\hbar\omega$), with adjustments made to align with the band gap of the targeted photocatalyst. ΔG denotes the 1.23 eV redox potential difference between H^+/H_2 and H_2O/O_2 during the water splitting reaction. The efficiency parameters η_{abs} , η_{cu} , and η_{STH} correspond to the conversion efficiency of incident light into absorbed energy, carrier utilization efficiency, and overall STH efficiency, respectively, thereby providing a comprehensive theoretical framework for evaluating the photocatalyst's solar-to-hydrogen conversion capability.

Notably, for systems with an intrinsic electric field, it is essential to incorporate the interfacial potential difference ($\Delta\Phi$) as a correction factor, leading to the modified STH efficiency η'_{STH} . This potential difference is determined by the CBM, VBM, and the redox potentials of the hydrogen evolution reaction (HER, $\chi(H_2)$) and oxygen evolution reaction (OER, $\chi(O_2)$), and can be further expressed as:

$$E = \begin{cases} E_{g}, \chi(H_{2}) \ge 0.2, \chi(O_{2}) \ge 0.6 \\ E_{g} + 0.2 - \chi(H_{2}), \chi(H_{2}) < 0.2, \chi(O_{2}) \ge 0.6 \\ E_{g} + 0.6 - \chi(H_{2}), \chi(H_{2}) \ge 0.2, \chi(O_{2}) < 0.6 \\ E_{g} + 0.8 - \chi(H_{2}) - \chi(H_{2}), \chi(H_{2}) < 0.2, \chi(O_{2}) < 0.6 \end{cases}$$
(5)

Note 2. Details for the Gibbs free energy calculation of HER and OER.

Upon adsorption, the water splitting reaction bifurcates into two half-reactions: HER and OER, with the cathode promoting HER as follow:

$$2H^+ + 2e^- = H_2$$
 (6)

and anode conductive OER as follow:

$$H_2O +^* = OH^* + H^+ + e^-$$
 (7)

$$OH^* + H^+ + e^- = O^* + 2(H^+ + e^-)$$
 (8)

$$O^* + 2(H^+ + e^-) + H_2O = OOH^* + 3(H^+ + e^-)$$
 (9)

$$OOH^* + 3(H^+ + e^-) = O_2 + 4(H^+ + e^-) + (10)$$

Where * represents the GaSe/YGaS₃ heterostructure, while H_2O^* , OH^* , O^* , and OOH^* denote small molecules adsorbed on the heterostructure. The change in Gibbs free energy (ΔG) for each reaction equation is calculated using the following equation[2]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S - \Delta G_U - \Delta G_{pH} \quad (11)$$

$$ZPE = \frac{1}{2} \sum h v_i \quad (14)$$

$$TS = k_b T \left[\sum_{K} \ln(\frac{1}{1 - e^{hv/k_b T}}) + \sum_{K} \frac{hv}{k_b T} (\frac{1}{e^{hv/k_b T}}) + 1 \right]$$
(12)

$$\Delta G_U = -eU \quad (13)$$

$$\Delta G_{pH} = -k_b T \ln 10 \times pH \quad (14)$$

$$\Delta G_{pH} = k_b T \ln 10 \times pH \quad (15)$$

where G, E, ZPE, TS, ΔG_U and ΔG_{pH} represent the free energy, total energy, zero-point energy, entropy contribution, potential bias effect, and pH effect, respectively.

Note 3. Details for optical properties calculation.

The transverse dielectric function $\mathcal{E}(\omega) = \mathcal{E}_1(\omega) + i\mathcal{E}_2(\omega)$ is used to describe the optical properties of materials[3,4], where ω is the photon frequency, $\mathcal{E}_1(\omega)$ is the real part and $\mathcal{E}_2(\omega)$ is the imaginary part of the dielectric function, respectively. The absorption coefficient can be evaluated according to the expression[3]:

$$\alpha(\omega) = \frac{\sqrt{2\omega}}{c} \left\{ \left[\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega) \right]^{\frac{1}{2}} - \varepsilon_1(\omega) \right\}^{\frac{1}{2}}$$
(16).

References

- [1] C.-F. Fu, J. Sun, Q. Luo, X. Li, W. Hu, J. Yang, Intrinsic Electric Fields in Two-dimensional Materials Boost the Solar-to-Hydrogen Efficiency for Photocatalytic Water Splitting, Nano Lett. 18 (2018) 6312–6317. https://doi.org/10.1021/acs.nanolett.8b02561.
- [2] Y. Yu, J. Zhou, Z. Sun, Novel 2D Transition-Metal Carbides: Ultrahigh Performance Electrocatalysts for Overall Water Splitting and Oxygen Reduction, Adv Funct Materials 30 (2020) 2000570. https://doi.org/10.1002/adfm.202000570.
- [3] J.-H. Yuan, K.-H. Xue, X. Miao, Two-dimensional ABC3 (A = Sc, Y; B = Al, Ga, In; C = S, Se, Te) with intrinsic electric field for photocatalytic water splitting, International Journal of Hydrogen Energy 48 (2023) 5929–5939. https://doi.org/10.1016/j.ijhydene.2022.11.113.
- [4] Y. Jun-Hui, G. Bo, W. Wen, W. Jia-Fu, First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO, Acta Physico-Chimica Sinica 31 (2015) 1302–1308. https://doi.org/10.3866/PKU.WHXB201505081.