Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supporting information

B_2C_9 as the High-performance Li-ion Battery Anode: Effects of Boronincorporation and Strain-engineering on the Adsorption and Diffusion of Lithium

Rui Shen a, Hao Cheng a, Guo-Xiang Gao a, Xin-Yue Li a, Chun-Sheng Liu $^{b,*},$ and Xiao-Juan Ye a,*

- ^a College of Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- ^b College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Corresponding author: csliu@njupt.edu.cn, yexj@njupt.edu.cn

We quantified transport in the 2D DP framework using (i) band-edge parabolic fits for effective masses, (ii) band-edge energy shifts under biaxial strain for deformation-potential constants E_1 , and (iii) energy-strain fitting for the 2D elastic modulus C_{2D} . From these, we obtained carrier mobilities of Li adsorbed B_2C_9 monolayer.

Effective mass at the band edge k_0 :

$$m^* = \frac{\hbar^2}{\frac{d^2 E}{dk^2}} \Big|_{k=k_0}$$

Mobility (2D DP model):

$$\mu = \frac{e\hbar^3 C_{2D}}{k_B T m^* m_d E_1^2}$$

$$m_n^* = 0.69 \text{ m}_0, \quad m_p^* = 0.88 \text{ m}_0;$$

 $\mu_n \approx 1.03 \times 10^4 \text{ cm}^2/(\text{V} \cdot \text{s}), \mu_p \approx 2.26 \times 10^4 \text{ cm}^2/(\text{V} \cdot \text{s}).$