Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

SUPPORTING INFORMATION

Manifestation of Excitonic Resonance in Diffuse Reflectance Spectra of Halide Perovskites

Vyacheslav N. Kuznetsov,¹ Yuri V. Chizhov,² Nadezhda I. Glazkova,¹ Galina V. Kataeva³ Ruslan V. Mikhaylov,² Vladimir K. Ryabchuk,² Alexei V. Emeline,^{1,2} and Nick Serpone ^{4*}

⁴ PhotoGreen Laboratory, Dipartimento di Chimica, Università di Pavia, via Taramelli 12, Pavia 27100, Italia; nick.serpone@unipv.it

Figure SI1. Graphic showing the dependence of the KM function and its numerator, $(1 - R)^2$, on R at low values of R. It is seen that the numerator is a linear function of R, but the KMF is nonlinear and can be fitted by the function $R^{-1.2}$ which is rather close to the function 1/R.

Due to the nonlinearity of the KM function in the range R < 0.3, a weak minimum R of the excitonic resonance, observed in DR spectra (see Figure 5), transforms into a pronounced maximum P2 band in KMF spectra.

¹ Photoactive Nanocomposite Materials Laboratory, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Petergof, 199034 Russian Federation. bv.n.kuznetsov@spbu.ru

² Department of Photonics, Faculty of Physics, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Petergof, 199034 Russian Federation.

³ Department of General and Applied Physics, Moscow State University of Civil Engineering, Yaroslavskoye shosse, 26, Moscow, 129337 Russian Federation.