Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supporting Information

Buchwald-Hartwig Aminated Pyrene-Heterocycles with Host-Guest-Enhanced NIR Phosphorescence: DFT-Guided Design Toward Breast Cancer Imaging Probes

Kaixuan Hu^{1, 2†}, Shufeng Chen^{2†}, Xinmin Wang^{1†}, Lingkai Tang³, Yan Cheng¹, Yuting Song¹, Hubing Shi¹, Jing Jing¹, Jianping Hu^{2*}, Ting Luo^{1*}
¹Breast Health Medical Research Institute, West China Hospital, Sichuan University, Chengdu, China

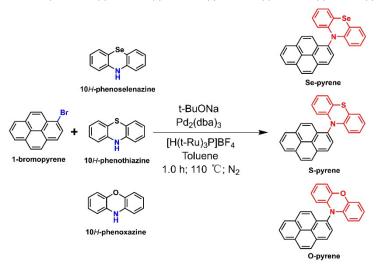
- ² Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- ³ College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- † These authors contributed equally to this work.
- * Correspondence: hjpcdu@163.com (Jianping Hu); luotingwch@163.com (T.L.)

1 General procedure for the synthesis of target compounds

 1 H and 13 C NMR both were recorded on a Bruker 400 spectrometer. 1 H NMR data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, dq = doublet of quarter, dt = doublet of triplet, qd = quarter of doublet, qt= quarter of triplet, td = triplet of doublet, tq = triplet of quarter), coupling constant (Hz), relative intensity. 13 C NMR data are reported as follows: chemical shift in ppm (δ).

1.1 Synthesis of Se-pyrene

Under nitrogen protection, 1-bromopyrene (422.0 mg, 1.5 mmol), 10H-phenoselenazine (553.9 mg, 2.25 mmol), NaHCO₃ (378.0 mg, 4.5 mmol), and tetrakis (triphenylphosphine) palladium (174.0 mg, 0.15 mmol) were dissolved in 1,4-dioxane and water (5:1, 2.5 ml:0.5 ml). The reaction was carried out using a fully automated microwave synthesizer at 120 °C for 1.0 h. When the reaction was complete, the reaction was detected using thin layer chromatography, the reaction mixture was cooled to room temperature, extracted with ethyl acetate, dried over Na₂SO₄, and finally the crude product was obtained by distillation of the organic phase under reduced pressure. The product was purified by silica gel column chromatography and eluted with gradient of ethyl acetate/hexane (0-20%) to obtain the brown solid product Se-pyrene. ¹H NMR (400 MHz, CDCl3) δ 8.30 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 9.2 Hz, 1H), 8.18 (d, J = 7.6 Hz, 1H), 8.14 – 8.05 (m, 4H), 8.02 – 7.93 (m, 2H), 7.19 (d, J = 1.6 Hz, 1H), 7.17 (d, J = 1.6 Hz, 1H), 6.73 (td, J = 7.4, 1.2 Hz, 2H), 6.69 – 6.62 (m, 2H), 6.12 (dd, J = 8.3, 1.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ 144.51 (s), 135.27 (s), 131.85 – 130.90 (m), 130.17 (s), 129.35 (t, J = 31.3 Hz), 128.34 (s), 127.21 (d, J = 16.6 Hz), 126.17 (dd, J = 48.8, 21.8 Hz), 124.75 (s), 123.03 (d, J = 7.7 Hz), 117.46 (s), 115.47 (s).


1.2 Synthesis of S-pyrene:

Under nitrogen protection, 1-bromopyrene (422.0 mg, 1.5 mmol), 10H-phenothiazine (448.4 mg, 2.25 mmol), NaHCO₃ (378.0 mg, 4.5 mmol), and tetrakis (triphenylphosphine) palladium (174.0 mg, 0.15 mmol) were dissolved in 1,4-dioxane and water (5:1, 2.5 ml:0.5 ml). The reaction was carried out using a fully automated microwave synthesizer at 120 °C for 1.0 h. When the reaction was complete, the reaction was detected using thin layer chromatography, the reaction mixture was cooled to room temperature, extracted with ethyl acetate, dried over Na₂SO₄, and the crude product was obtained by distillation of the organic phase under reduced pressure. The product was purified by silica gel column chromatography and eluted with gradient of ethyl acetate/hexane (0-20%) to obtain the brown solid product S-pyrene. ¹H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 8.0 Hz, 1H), 8.25 – 8.07 (m, 5H), 8.05 – 7.96 (m, 3H), 6.99 (dd, J = 7.6, 1.5 Hz, 2H), 6.70 (td, J = 7.5, 1.1 Hz, 2H), 6.63 – 6.56 (m, 2H), 5.88 (dd, J = 8.3, 1.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ 144.16 (s), 134.11 (s), 129.14 (d, J = 14.1 Hz), 128.38 (s), 127.03 (d, J = 18.0 Hz), 126.73 – 126.29 (m), 125.83 (d, J = 4.5 Hz), 122.78 (s), 122.44 (s), 119.66 (s), 115.98 (s), 77.29 (d, J = 11.5 Hz), 77.03 (s), 76.71 (s).

1.3 Synthesis of O-pyrene

Under nitrogen protection, 1-bromopyrene (422.0 mg, 1.5 mmol), 10*H*-phenoxazine (412.2 mg, 2.25 mmol), NaHCO₃ (378.0 mg, 4.5 mmol), and tetrakis (triphenylphosphine) palladium (174.0 mg, 0.15 mmol) were dissolved in 1,4-dioxane and water (5:1, 2.5 ml:0.5 ml). The reaction was carried out using a fully automated microwave synthesizer at 120 °C for 1.0 h. When the reaction was complete, the reaction was detected using thin layer chromatography, the reaction mixture was cooled to room temperature, extracted with ethyl acetate, dried over Na₂SO₄, and the crude product was obtained by distillation of the organic phase under reduced pressure. The product was purified by silica gel column chromatography and eluted with gradient of ethyl acetate/hexane (0-20%) to obtain the brown solid product O-pyrene. ¹H NMR (400 MHz, CDCl3) δ 8.30 (dd, J = 7.9, 5.1 Hz, 1H), 8.23 – 8.06 (m, 5H), 8.04 – 7.92 (m, 3H), 6.71 (dd, J = 7.9, 1.3 Hz, 2H), 6.57 (s, 2H), 6.39 (dd, J = 11.1, 4.3 Hz, 2H)

2H), 5.59 (d, J = 7.9 Hz, 1H). 13 C NMR (100 MHz, CDCl3) δ 144.02 (s), 134.63 (s), 132.13 – 131.17 (m), 129.09 (s), 128.40 (s), 127.10 (s), 126.85 (s), 126.51 (s), 125.83 (d, J = 7.6 Hz), 123.40 (s), 122.40 (s), 121.39 (s), 115.46 (s), 113.61 (s), 77.34 (s), 77.03 (s), 76.71 (s).

Scheme S1. The synthetic route of the Se-pyrene, S-pyrene and O-pyrene compounds.

1.4 ¹H NMR (400 MHz, CDCl₃) Spectrum of Se-pyrene

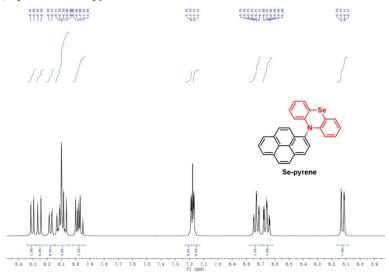


Figure S1. ¹H NMR spectrum of Se-pyrene (in CDCl₃).

$1.5\ ^1H$ NMR (400 MHz, CDCl3) Spectrum of S-pyrene

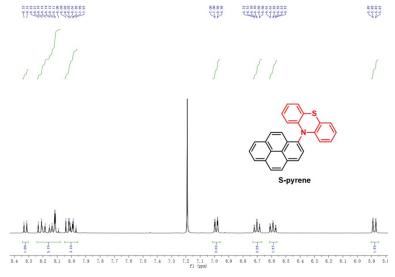


Figure S2. ¹H NMR spectrum of S-pyrene (in CDCl₃).

1.6 ¹H NMR (400 MHz, CDCl₃) Spectrum of O-pyrene

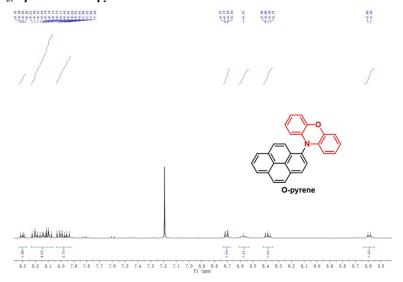


Figure S3. ¹H NMR spectrum of S-pyrene (in CDCl₃).

1.7 ¹³C NMR (100 MHz, CDCl₃) Spectrum of Se-pyrene

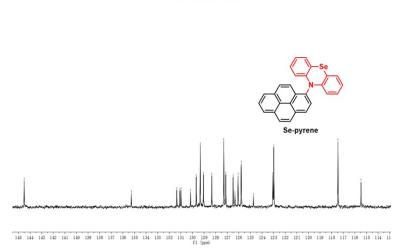


Figure S4. ¹³C NMR spectrum of Se-pyrene (in CDCl₃).

1.8 ¹³C NMR (100 MHz, CDCl₃) Spectrum of S-pyrene

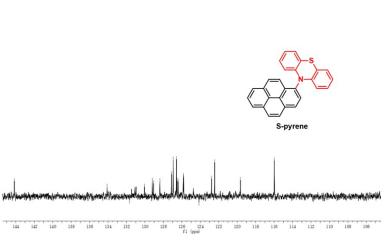


Figure S5. ¹³C NMR spectrum of S-pyrene (in CDCl₃).

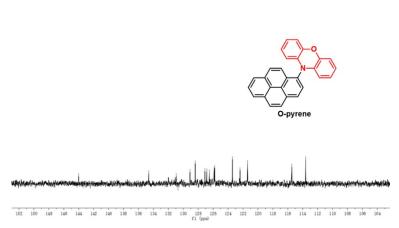


Figure S6. ¹³C NMR spectrum of O-pyrene (in CDCl₃).

2 Theoretical calculation

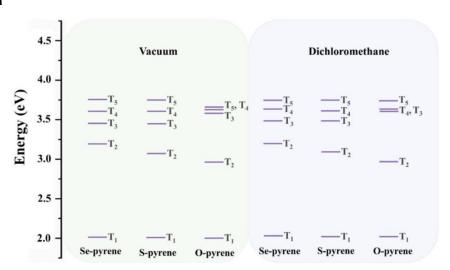


Figure S7. Diagrams of the TD-DFT calculated energy levels

Table S1. The S_n and T_n excitation energy (n = 1, 2, 3, 4, 5) in ev of compound Se-pyrene calculated at the TD- ω B97X-D3/6-31G (d, p) level, where the smallest S_n and T_n energies are underlined.

State	S ₀ geometry	S ₁ geometry	T ₁ geometry
S ₁	3.986	<u>3.235</u>	3.347
S_2	4.014	<u>3.601</u>	3.606
S_3	4.033	<u>3.731</u>	3.734
S_4	4.219	<u>3.882</u>	4.093
S_5	4.648	<u>4.210</u>	4.320
T ₁	2.017	1.577	0.836
T_2	3.185	<u>2.580</u>	3.149
T_3	3.461	3.277	<u>3.163</u>
T_4	3.623	<u>3.352</u>	3.469
T ₅	3.758	3.422	3.487

Table S2. The S_n and T_n excitation energy (n = 1, 2, 3, 4, 5) in ev of compound S-pyrene calculated at the TD- ω B97X-D3/6-31G (d, p) level, where the smallest S_n and T_n energies are underlined.

State	S ₀ geometry	S ₁ geometry	T ₁ geometry
S ₁	3.910	3.181	3.163
S_2	4.013	3.497	<u>3.479</u>
S_3	4.033	3.733	<u>3.684</u>
S_4	4.151	3.883	<u>3.856</u>
S_5	4.593	4.201	<u>4.191</u>
T ₁	2.011	1.577	<u>1.496</u>
T_2	3.075	2.469	<u>2.463</u>
T_3	3.457	3.231	<u>3.206</u>
T_4	3.620	3.320	<u>3.317</u>
T_5	3.756	3.421	<u>3.385</u>

Table S3. The S_n and T_n excitation energy (n = 1, 2, 3, 4, 5) in ev of compound O-pyrene calculated at the TD- ω B97X-D3/6-31G (d, p) level, where the smallest S_n and T_n energies are underlined.

State	S ₀ geometry	S ₁ geometry	T ₁ geometry
S ₁	3.710	3.181	3.172
S_2	4.012	<u>3.497</u>	3.683
S_3	4.037	<u>3.733</u>	3.786
S_4	4.134	3.883	<u>3.857</u>
S_5	4.489	<u>4.201</u>	4.263
T ₁	2.007	1.577	<u>1.490</u>
T_2	2.968	<u>2.469</u>	2.671
T_3	3.616	3.231	<u>3.172</u>
T_4	3.620	<u>3.320</u>	3.379
T_5	3.659	<u>3.421</u>	3.538

Table S4. The S_n and T_n excitation energy (n = 1, 2, 3, 4, 5) in ev of compound Se-pyrene calculated at the TD- ω B97X-D3/6-31G (d, p) level (PCM: dichloromethane), where the smallest S_n and T_n energies are underlined.

State	S ₀ geometry	S ₁ geometry	T ₁ geometry
S ₁	3.935	3.256	3.205
S_2	4.014	<u>3.667</u>	3.731
S_3	4.054	3.803	<u>3.757</u>
S_4	4.310	<u>3.859</u>	4.125
S_5	4.634	<u>4.297</u>	4.301
T ₁	2.029	1.411	0.865
T_2	3.203	<u>2.811</u>	3.172
T_3	3.486	3.303	<u>3.172</u>
T_4	3.630	<u>3.387</u>	3.486
T ₅	3.746	<u>3.478</u>	3.495

Table S5. The S_n and T_n excitation energy (n = 1, 2, 3, 4, 5) in ev of compound S-pyrene calculated at the TD- ω B97X-D3/6-31G (d, p) level (PCM: dichloromethane), where the smallest S_n and T_n energies are underlined.

State	S ₀ geometry	S ₁ geometry	T ₁ geometry
S ₁	3.933	<u>3.201</u>	3.322
S_2	3.994	3.574	<u>3.508</u>
S_3	4.014	3.752	<u>3.559</u>
S_4	4.239	<u>3.819</u>	3.845
S_5	4.576	4.238	<u>4.151</u>
T ₁	2.024	1.428	1.493
T_2	3.094	2.643	<u>2.469</u>
T_3	3.482	<u>3.249</u>	3.330
T_4	3.629	<u>3.384</u>	3.386
T_5	3.746	3.420	<u>3.403</u>

Table S6. The S_n and T_n excitation energy (n = 1, 2, 3, 4, 5) in ev of compound O-pyrene calculated at the TD- ω B97X-D3/6-31G (d, p) level (PCM: dichloromethane), where the smallest S_n and T_n energies are underlined.

State	S ₀ geometry	S ₁ geometry	T ₁ geometry
S_1	3.862	3.102	3.186
S_2	3.934	3.740	<u>3.652</u>
S_3	4.015	3.838	<u>3.731</u>
S_4	4.117	3.885	<u>3.820</u>
S_5	4.487	4.304	<u>4.211</u>
T ₁	2.019	<u>1.421</u>	1.482
T_2	2.972	2.810	<u>2.620</u>
T_3	3.630	<u>3.153</u>	3.171
T_4	3.632	<u>3.377</u>	3.381
T ₅	3.735	<u>3.498</u>	3.505

Table S7. Absolute value of SOCMEs (cm⁻¹) calculated at TD-ωB97X-D3/def2-TZVP(-f) level of theory of compound Se-pyrene (PCM: dichloromethane).

Transition type	S ₀ geometry	S ₁ geometry	T ₁ geometry
$ \langle T_1 H_{SOC} S_0 \rangle $	0.000	0.558	0.000
$\left \left\langle T_{2}\right H_{SOC}\left S_{0}\right\rangle \right $	147.4	78.79	0.950
$\left \left\langle T_{3}\right H_{SOC}\right S_{0}\rangle\right $	10.14	43.74	146.8
$\left \left\langle T_{4}\right H_{SOC}\right S_{0}\rangle\right $	0.930	35.71	3.170
$\left \left\langle T_{5} \middle H_{SOC} \middle S_{0} \right\rangle \right $	0.150	30.60	11.39
$\left \left\langle T_{1}\right H_{SOC}\left S_{1}\right\rangle \right $	0.000	1.262	0.000
$\left \left\langle T_{2}\right H_{SOC}\right S_{1}\rangle\right $	0.282	1.882	0.050
$\left \left\langle T_{3}\right H_{SOC}\right S_{1}\rangle\right $	0.010	1.185	0.253
$\left \left\langle T_{4}\right H_{SOC}\right S_{1}\rangle\right $	0.050	0.703	0.070
$\left \left\langle T_{5}\right H_{SOC}\left S_{1}\right\rangle \right $	0.070	2.717	0.140

Table S8. Absolute value of SOCMEs (cm⁻¹) calculated at TD-ωB97X-D3/def2-TZVP(-f) level of theory of compound S-pyrene (PCM: dichloromethane).

Transition type	S ₀ geometry	S ₁ geometry	T ₁ geometry
$\left \left\langle T_{1}\right H_{SOC}\left S_{0}\right\rangle \right $	0.020	0.244	0.010
$\left \left\langle T_{2} \middle H_{SOC} \middle S_{0} \right\rangle \right $	24.99	9.282	2.417
$\left \left\langle T_{3}\right H_{SOC}\right S_{0}\rangle\right $	2.930	4.177	0.421
$\left \left\langle T_4 \middle H_{SOC} \middle S_0 \right\rangle \right $	0.210	1.668	0.073
$\left \left\langle T_{5}\right H_{SOC}\right S_{0}\rangle\right $	0.040	6.741	1.306
$\left \left\langle T_{1}\right H_{SOC}\right S_{1}\rangle\right $	0.000	0.238	0.262
$\left \left\langle T_{2}\right H_{SOC}\right S_{1}\rangle\right $	0.108	0.591	0.400
$\left \left\langle T_{3}\right H_{SOC}\right S_{1}\rangle\right $	0.030	0.325	0.322
$\left \left\langle T_{4}\right H_{SOC}\right S_{1}\rangle\right $	0.040	0.102	0.112
$\left \left\langle T_{5}\right H_{SOC}\right S_{1}\rangle\right $	0.070	0.410	0.580

 $\textbf{Table S9}. \ \ \textbf{Absolute value of SOCMEs (cm$^{-1}$) calculated at TD-ωB97X-D3/def2-TZVP(-f) level of theory of compound $\textbf{O-pyrene (PCM: dichloromethane)}.}$

Transition type	S ₀ geometry	S ₁ geometry	T ₁ geometry
$ \langle T_1 H_{SOC} S_0 \rangle $	0.010	0.287	0.108
$\left \left\langle T_{2}\right H_{SOC}\left S_{0}\right\rangle \right $	0.323	0.737	0.720
$\left \left\langle T_{3}\right H_{SOC}\right S_{0}\rangle\right $	0.240	1.236	1.292
$\left \left\langle T_{4}\right H_{SOC}\right S_{0}\rangle\right $	0.420	0.297	0.249
$\left \left\langle T_{5} \middle H_{SOC} \middle S_{0} \right\rangle \right $	0.290	0.721	0.580
$\left \left\langle T_{1}\right H_{SOC}\left S_{1}\right\rangle \right $	0.772	0.601	0.625
$\left \left\langle T_{2}\right H_{SOC}\right S_{1}\rangle\right $	0.850	0.786	0.776
$\left \left\langle T_{3}\right H_{SOC}\right S_{1}\rangle\right $	0.271	0.299	0.271
$\left \left\langle T_{4}\right H_{SOC}\right S_{1}\rangle\right $	0.455	0.191	0.108
$\left \left\langle T_{5}\right H_{SOC}\right S_{1}\rangle\right $	0.242	0.457	0.457