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Table S1. Formation energy (Ey) values of each system BZCT(Co?"), BZCT(Co*") and

BZCT(Co*")
BZCT(Co?*") BZCT(Co*") BZCT(Co*")
EdeV) 50.5561 96.1053 -4.4917
Table S2. BTO for different supercell sizes.
Supercell size a=b c c/a Band Gap(eV)  Ps (uC/cm?)
Ix1x1 3.976 4.048 1.018 1.76 30
2%2%2 3.996 4217 1.055 1.81 29.57
2x2x2(GGA+U) 3.991 4.041 1.013 32 26.86
3x3x3 3.967 4.067 1.025 1.76 —

The computational results demonstrate that parameters such as polarisation,

bandgap, and lattice constant are consistent with experimental data and literature

reports. This confirms that the influence of long-range interactions has been adequately

accounted for within the computational framework employed in this study, and does

not significantly compromise the core conclusions.

Table S3. Hubbard U parameter values are chosen for the O-2p, Ti-3d and Ba-5d
orbitals of BTO cell, yielding gap energy values in good agreement with the
experimental data, by using the GGA-PBE approximation.

Uq4(Ba) Uqy(T) U,(0) Eg(eV)
0 1 0 1.8029
0 2 0 1.9294
0 3 0 2.1770
0 4 0 2.1962




0 6 0 2.4816
0 7 0 2.6303
0 8 0 2.8885
0 9 0 3.0437
0 10 0 3.2018

Table S4. Convergence tests on cutoff energies in the range of 400-600 eV.

ENCUT(eV) 400 450 500 550 600

TOTEN(eV) -320.5357  -320.3563  -320.3463 -320.3581  -320.4026

AE(eV) —_— 0.1793 0.0099 -0.0117 -0.04448

We calculated the energy deviations at other cutoff energies relative to the total
energy at 500 eV. For instance, at a cutoff energy of 450 eV, the energy deviation was
merely 0.0099 eV; whilst at 550 eV, the deviation was -0.0117 eV. Both deviations are
substantially below the conventional convergence criterion of 0.05 eV/atom, falling
within negligible error margins. This demonstrates that 500 eV adequately satisfies the
truncation requirements for electron wave functions in the system, eliminating the need

for higher truncation energies to achieve greater precision.

Table S5. K-point grid convergence tests.

KPOINTS 4x4x4 5x5x%5 6x6x6 TXTXT

TOTEN(eV) -320.3061 -320.3463 -320.3463 -320.3464




Increasing the K-point grid from 4X4X4 to 5X5X35 resulted in a significant

decrease in total energy, which then stabilised. However, increasing it further, to
6X6X6 and 7X7X7, yielded negligible changes in total energy, falling within an

insignificant range. This suggests that the 5 X5 X5 grid already meets the requirements

for energy convergence. Enlarging the K-point grid further would substantially increase

computational costs without significantly improving computational accuracy.

Consequently, the 5X5X5 K-point grid was selected for subsequent structural

optimisation and electronic structure calculations.

Table S6. Comparison of GGA+U with Hybrid Functional (HSE06).

GGA+U HSEO06

Eq(eV) 3.20 3.22

The band gap calculated using GGA+U is 3.20 eV, while the HSE06 calculation
yields 3.22 eV, representing a deviation of merely 0.6%. The GGA+U method
employed in this study adequately describes the influence of long-range Coulomb
interactions on electronic structure (band gap). Furthermore, owing to practical
computational constraints, the band gap and lattice constant values obtained via
GGA+U calculations are already highly consistent with experimental data.
Consequently, these results provide a reliable foundation for subsequent investigations,
eliminating the need for more computationally intensive hybrid functionals in follow-

up calculations.

Table S7. Table of energies of individual atoms(gz,, pcos Mpa, Mti) and substitution

energy (Ey) data for systems with different doping sites of the elements. The four



identifiers, Zn(Ba), Zn(Ti), Co(Ba) and Co(Ti) are preceded by the individual elements

doped, and inside the parentheses are the substituted atomic sites.

Energy/ eV Zn(Ba) Zn(Ti) Co(Ba) Co(Ti)
Egoped -330.33274827 | -321.24961857 | -331.81496668 | -327.39082757
Uzn -10.54035702
Lo -11.35391924
UBa -3.93582114
UTi -8.94622768
Epure -320.17490499
E¢ -3.5533074 0.74153405 -4.22196359 -4.8082310

As demonstrated in the table, Zn exhibits a lower formation energy at Ba sites and
Co at Ti sites. This suggests that the stability of the substituent site is enhanced, as
indicated by the lower substitution energy. Consequently, the substitution of Zn>" at

BaZ" sites and Co?* at Ti*" sites is more feasible.

Table S8. Formation energy (Ey) values and the energy of each system(Egqped, Epure) and

elements (Uzn> Mcor MBar Mri) -

Energy(eV)
pure -320.39445262
Edopea(Co2") -266.38204588
Edopea(Co3) -541.22724457
Edopea(Co*) -321.42991954

Hzn -1.11247205

Heo -6.81992599




UBa

-3.5469440725

Hri

-7.8417359767

Figure S1. Models of different Co ion valence states: (a) BZCT (Co*") and (b) BZCT

(Co™)
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When Ti** at site B is replaced by lower-valent Co** or Co*', the system

experiences charge imbalance due to the loss of positive charge. The formation of

oxygen vacancies restores lattice charge neutrality by reducing negative charge (loss of

0O*) — this represents the most typical charge compensation mechanism in cobalt-

doped BTO systems. In the 2x2%2 supercell depicted in Figure S1(a), the single oxygen

vacancy introduced by Co*" doping forms a local charge-balanced unit with the dopant

ion. Conversely, in the 2x2x4 supercell shown in Figure S1(b), the oxygen vacancies

corresponding to Co** doping are distributed across a larger-scale lattice.



Figure S2. Band structures and density of states for different Co ion valence states:(a)
Band structure of BZCT (Co?"), (b) Band structure of BZCT (Co*"), (¢c) DOS of BZCT
(Co*"), (d) DOS of BZCT (Co*")
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Combining the band structure in Figure S2(a) with the density of states in Figure
S2(c), we observe a distinct impurity level at the Fermi level. However, the absence of
a significant band gap precludes further computational analysis. This suggests that
BZCT (Co*") exhibits metallic band characteristics, which correspond to the
hybridisation of Co-O orbitals at the Fermi level in the density of states. Figure S2(b)
shows that the Fermi level resides within the band gap; however, the extremely narrow
gap (Eg = 1.26 eV) exhibits the characteristics typical of a narrow-bandgap
semiconductor. Although no band overlap is evident at the Fermi level, the band gap is
considerably smaller than that of BZCT(Co*, Eg = 2.34 e¢V). Figure S2(d) shows that
the total density of states near the Fermi level (at 0 eV) approaches zero, while the

valence band top (-1~ 0 eV) is dominated by O 2p and Co 3d orbitals.



Figure S3. Bond length and bond angle diagrams for (a) BTO and (b) BZCT octahedra

Figure S4. The band structures and band gaps of (a) BZTO and (b) BTCO.

4 6 7 7

L= b N
4 IESE =V
1 g

s e T i BTCO
2 =, LT i
= § ' 0 1 | v L

2 o © 1 1 | Eg=0.74ev

w u.|° ——.—:F : - :

——— =

-4 L —_—Tl L o —— L ot —

r x M r z R A ZIX RM

Figure SS. Electrical conductivity of BTO, BZTO, BTCOand BZCT
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These calculations were grounded in the semi-empirical framework of the
Boltzmann transport theory. The conductivity ¢ can be obtained by integrating the
distribution function(equation 1) over the whole space*’:

[aﬂ, (T:¢)

68]

0, (T30 == [ 7,4(2)

where f,(T,e) is the Fermi-Dirac distribution function, p is the chemical potential
and T is the temperature. When a constant relaxation time is known, it can be shown
that the conductivity at RTA and RBA can be obtained for a certain chemical potential
and temperature by calculating the energy band structure.A comparative analysis of the
conductivity and relaxation time between the individual systems is illustrated in Figure
S3, where the horizontal coordinates are the maximum and minimum values of the

chemical potential with respect to the Fermi energy level.



