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Description of Crystal Cell Re-built
To ensure consistency throughout all calculations, the original unit cell was redefined. This was 

achieved by taking integer combinations of the original lattice vectors, yielding a new set of lattice vectors 
while preserving both the lattice framework and the atomic topology. Let the original lattice vector matrix be 
L (with column vectors), and the new lattice vector matrix be L'. They are related through an integer 
transformation matrix P as L' = LP. Assuming the original lattice vectors (in Å) are given by:

L = [1 0 0
0 1 0
1 0 1]

For C2/m:
a1=1/2(a+b)
b1=1/2(-a+b)
c1=3c

For :R3̅m
a1=a
b1=b
c1=b+c-a

Through the above operations, a new crystal cell matrix is obtained.

Van Vleck model analysis of Jahn–Teller distortions in NiO6 octahedra
To quantitatively analyze the Jahn–Teller distortion of the NiO6 octahedron, we employed the Van 

Vleck model, in which the six Ni–O bond lengths of the octahedron are expanded into symmetry-adapted 
modes. The specific procedure is as follows:

The six Ni–O bonds are averaged along the local x, y, and z directions to obtain lx, ly, and lz, respectively. 
Among these, the Eg modes of the octahedron correspond to two distinct displacement patterns. Axial 
tetragonal mode (Q3): elongation or compression along the z-axis, which breaks axial symmetry;
Transverse orthorhombic mode (Q2): unequal bond lengths within the xy-plane, which breaks planar 
symmetry.
The corresponding expressions are given as:
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Here, the calculated values are Q2 = 0 and Q3= 0.2397Å.
The coefficients and their summation are determined by the normalization conditions in group theory, 

ensuring that the two modes are orthogonal and independent in the energy expansion.
When Q3 > 0 and Q2 ≈ 0, the system corresponds to a typical axial Jahn–Teller distortion, characterized by 
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two elongated bonds and four shortened bonds;
When Q2 ≠ 0, unequal bond lengths emerge within the xy-plane, indicating the presence of an orthorhombic 
Jahn–Teller component.

The description regarding the calculation of the g-factor
Based on perturbation theory for the g factors of a d7 configuration in a tetragonally distorted octahedron, 

the calculated results show a pronounced variation in the g-factor anisotropy during the phase transition, 
providing supporting evidence for the characteristics of the IMT. The g-factor is calculated using the 
following formula1,2: 
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Among them, 
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Here, Ei represents the energy difference between the ground and excited states, while the subscripts // 
and ⊥ correspond to the axial and perpendicular components of the tetragonal splitting of the relevant energy 
levels. These values can be obtained from the energy matrix of a d7 ion under tetragonal symmetry:
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In the above formula, the spin-orbit coupling coefficients (ζ and ζ′) and the orbital reduction factors (k 
and k') arise from the anisotropic (diagonal and off-diagonal) interactions of the spin-orbit coupling and 
orbital angular momentum operators within the irreducible representation γ. Within the cluster approach, 
these quantities are expected to satisfy the following relationships3,4:
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  and  represent the orbital coupling coefficients of 3d7(Ni3+) and ligand (O2−), respectively. A is the ζ 0
 d  ζ 0p

integral , based on the reference distance R. Nᵧ , λᵧ and λs  are normalization factors and orbital R〈ns|∂ ∂y|npy〉
mixing coefficients. The normalization factor satisfies:
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In the formula, N represents the degree of covalency (covalent factor) between the central Ni3+ and the 
ligand O2−. Sdp and Sds  are group overlap integrals, which are proportional to the orbital mixing coefficients: 
λe/Sdpe ≈ λs/Ss.
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Table S-1. Crystal structures and energies obtained from soft-mode structural exploration of the high-
temperature  phase.R3̅m

q-points Irreducible Representation Frequency (THz) Relaxed Space Group E (eV/f.u.)
Γ

Γ +
3

-1.643 P21/c -19.263

M
M +

3
-4.863 P2/m -19.135

M
M−

5
-4.852 R-3m -19.293

A
A−

1
-2.008 C2/c -19.237

L
L−

2
-4.789 R-3m -19.293

L
 (the other component)L−

2
-4.776 R-3m -19.293

Table S-2. Energetics of different magnetic states.
Magnetic Configuration E (eV/f.u.)

A-AFM -19.4485
C-AFM -19.4487
G-AFM -19.4519

FM -19.4503



Fig. S-1. Projected density of states (PDOS) for the low-temperature monoclinic C2/m phase: (a) Ni-3d, (b) O-2p, and 
(c) Na-2s orbitals; and for the high-temperature rhombohedral  phase: (d) Ni-3d, (e) O-2p, and (f) Na-2s orbitals.mR3

Fig. S-2. Variation of the band gap during the distortion process.



Fig. S-3. This illustrates simple examples of displacive and order–disorder transitions. In this work, it has no specific 
physical significance and is used solely to highlight the difference between the two types of phase transitions.

Fig. S-4. Phonon spectra of (a) the low–temperature monoclinic C2/m phase and (b) the high–temperature rhombohedral 

 phase.mR3

(a)

(b)



Fig. S-5. Regulation of phonon instability in the high-temperature rhombohedral phase by thermal expansion. (a) 
Pronounced suppression of the dynamical instability at the Γ point. The squared frequency (ω2) of the softest optical 
phonon mode at Γ as a function of the relative volume (V/V0). (b) Transfer of instability modes. Phonon spectrum 
corresponding to the largest volume in (a) (V/V0 = 1.05). The imaginary frequency at the Γ point is strongly suppressed; 
however, dynamical instabilities persist at specific non-Γ wave vectors in the Brillouin zone, indicating that the 
instability of the high-temperature phase is not completely eliminated but instead shifts to spatially modulated modes.

 

Fig. S-6. Low-temperature properties of NaNiO2, including (a) the A-type antiferromagnetic magnetic configuration, 

Large yellow spheres denote Na, gray spheres Ni, and red spheres O.(b) the calculated Néel temperature (~19.3 K), and 
(c) a comparison of the phonon spectra obtained with and without magnetic ordering.

Fig. S-7. Evolution of the energy per formula unit (eV/f.u.) as a function of the bond-length difference index (ΔR). The 



horizontal axis (ΔR) quantifies the degree of local structural distortion, defined as the difference between the longest and 
shortest Ni–O bond lengths in each NiO6 octahedron. 


