Supporting Information

Structure-Function Correlations in Graphene Screen-Printed Electrodes: Capacitive and Faradaic Behaviour

Tharinda Kasemphong,¹ Monchai Jitvisate,² Chanida Jakkrawhad,¹ Wichayaporn Kamsong,³ Chanpen Karuwan,³ Pachanuporn Sunon,⁴ Supinya Nijpannich,⁵ Phanawan Whangdee,⁶ Theeranun Siritanon,¹ Kamonwad Ngamchuea*¹

- ¹ School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
- ² School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
- ³ National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- ⁴ Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
- ⁵ Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
- ⁶ Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand
- *Corresponding author: Kamonwad Ngamchuea, School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand. Email: kamonwad@g.sut.ac.th; Tel: +66 (0) 44 224 637

Simulation vs. Experiment: Faradaic Behaviour

Cyclic voltammograms of the $[Fe(CN)_6]^{4-/3-}$ couple were simulated using a 1D diffusion model to a planar electrode under excess supporting electrolyte (i.e. negligible migration). Concentration profiles of the reduced and oxidized species, ${}^C_0(x,t)$ and ${}^C_R(x,t)$, were obtained by solving Fick's law of diffusion:

$$\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} (i = O,R)$$
(S1)

over $0 \le x \le L$, with L chosen to be sufficiently large $(L \ge 6\sqrt{Dt_{max}})$ to approximate semi-infinite diffusion (i.e. $C_i(L,t) \approx C_i^*$ for all t). Initial conditions were $C_R(x,0) = C_R^*$ and $C_O(x,0) = 0$. At the electrode surface (x = 0), the faradaic flux was defined by Butler–Volmer kinetics:

$$J = k^{0} \left[C_{R}(0,t) exp(\frac{\beta F \eta}{RT}) - C_{O}(0,t) exp(\frac{-\alpha F \eta}{RT}) \right]$$
 (S2)

with boundary conditions

$$J = -D_0 \frac{\partial C_0}{\partial x} \Big|_0 = D_R \frac{\partial C_R}{\partial x} \Big|_0$$
 (S3)

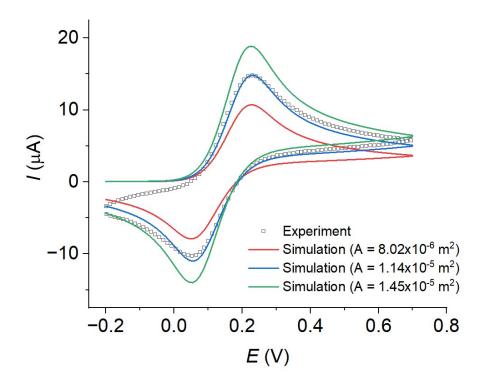
and $\eta(t) = E(t) - E^0$, where E(t) follows the experimental triangular waveform at scan rate v. The faradaic current was calculated as I = nFAJ. Simulations were performed using the open-source package FreeSim,² and the value of k^0 was taken from the experimentally determined value reported in Section 3.7 in the main text.

Figure S1 presents a representative example, showing that the experimentally determined value of k^0 provides a good fit to the observed peak potentials when compared with simulation. The electroactive surface area of each electrode was initially estimated using the limiting forms of

the Randles-Ševčík equation. Using the reversible Randles-Ševčík equation (eqn. S4) yielded A values smaller than the theoretically predicted area. In contrast, applying the expression for totally irreversible systems (eqn. S5) gave A values significantly larger than the theoretically predicted area, indicating overestimation.

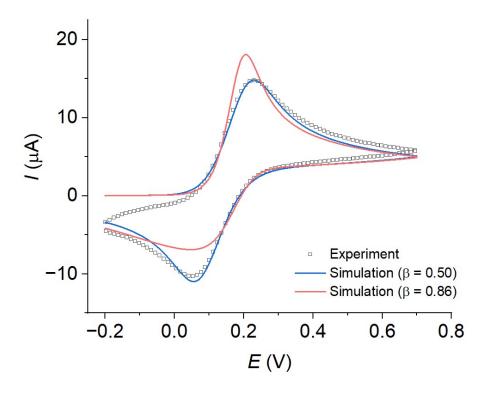
Reversible Randles-Ševčík equation:³

$$I_p = 0.446nFAc^* \sqrt{\frac{nFDv}{RT}}$$
(S4),


where I_p is the peak current, n is the total number of electron transfer, A is the electroactive surface area, C^* is the bulk concentration, V is the scan rate, F is the Faraday constant (96485 C mol⁻¹), D is the diffusion coefficient, R is the universal gas constant (8.314 J K⁻¹ mol⁻¹), and T is the absolute temperature.

Irreversible Randles-Ševčík equation:³

$$I_{p} = 0.496\sqrt{n' + \beta} nFAc^{*} \sqrt{\frac{F\nu D}{RT}}$$
(S5),


where n' is the number of electron transfer before the rate-determining step and β is the anodic transfer coefficient of the rate-determining step. I_p , n, F, A, c^* , v, R, and T have the same meanings as above.

This behaviour is consistent with the $[Fe(CN)_6]^{4-/3-}$ couple at our electrodes exhibiting quasireversible kinetics, lying between the reversible and fully irreversible limits; therefore, neither
limiting form is appropriate for accurate determination of A. Nonetheless, although neither the
reversible nor totally irreversible Randles–Ševčík expressions yields an accurate absolute Aunder quasi-reversible conditions, applying a single expression consistently across all
electrodes provides a useful comparative ('apparent') electroactive area for benchmarking
between SPE types.

Figure S1: Experimental and simulated CVs of 1.0 mM [Fe(CN)₆]⁴⁻ in 0.10 M KCl recorded at a scan rate of 50 mV s⁻¹ for commercial graphene SPE. Simulation parameters: $A = 8.02 \times 10^{-6}$ m² (from the reversible Randles–Ševčík equation, eqn. S4) or 1.45×10^{-5} m² (from the totally irreversible Randles–Ševčík, eqn. S5) or 1.14×10^{-5} m² (best-fit to the experimental voltammogram), $k^0 = 1.03 \times 10^{-5}$ m s⁻¹, $\beta = 0.5$.

The transfer coefficients (β) obtained experimentally via mass-transport-corrected Tafel analysis (eqn. 15, main text) fall in the range $\beta = 0.76 - 0.86$ across all SPEs. In contrast, the voltammograms are highly symmetric and are better reproduced by simulation using $\beta = 0.5$ (Figure S2). This discrepancy likely reflects that the experimental β values are apparent parameters extracted under conditions where surface heterogeneity, uncompensated resistance, and non-ideality in the kinetic model can bias Tafel-derived slopes, whereas the simulations assume ideal Butler–Volmer kinetics with a uniform planar interface.

Figure S2: Experimental and simulated CVs of 1.0 mM [Fe(CN)₆]⁴⁻ in 0.10 M KCl recorded at a scan rate of 50 mV s⁻¹ for commercial graphene SPE. Simulation parameters: $A = 1.14 \times 10^{-5}$ m², $k^0 = 1.03 \times 10^{-5}$ m s⁻¹, $\beta = 0.50$ or 0.86.

References

- 1. Compton, R. G.; Kätelhön, E.; Ward, K. R.; Laborda, E., *Understanding Voltammetry:* Simulation of Electrode Processes. World Scientific: 2014.
- 2. Chen, H.; Hu, X.; Lu, Y., Advancing Voltammetry Education with FreeSim: An Interactive Toolkit for Teaching Electrochemical Simulation. *Journal of Chemical Education* **2025**.
- 3. Compton, R. G.; Banks, C. E., *Understanding Voltammetry*. World Scientific: 2018.