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Figure S1 (a) Mass spectra obtained at a probe pulse intensity of 4.9x10' W/cm?. with (red) and
without (black) the filament laser pulse (450 pJ/pulse, 500 Hz). Each spectrum is normalized at
m/z 29. (b) Expanded view of the mass spectra shown in (a). (c¢) Difference spectrum between the
spectra obtained with and without the filamentation laser pulse. The hatched areas indicate spectral
regions where strong signals of the probe products from hexane hinder clear identification of the

filament products.
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Figure S2 Full-width half maximum of the velocity distribution of the major peaks observed in the
difference spectrum (Fig. S1). The horizontal lines represent the reference width w,° and critical width

w,’, respectively.
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Figure S3 (a) Relative yields of the major peaks observed in Fig. S1(c). The number of hydrogen
atoms (n) is indicated above each bar. Tunnel ionization probabilities calculated for the probe pulse
with a duration of 50 fs and a peak intensity of 4.9 x 10'3> W/cm? are also shown. (b) Relative yields
of the products obtained after tunnel ionization efficiency correction. Since the ionization energies of
C.H (n=4, 6, 8, 10, 12) are unavailable, the ionization potentials of C,H> are used instead for peaks
at m/z 49, 73, 97, 121, and 145. The color indicates the ratio w,/w,’ of each peak with w,” being the
reference width determined from the C¢Hi4" peak. The filament products (7, < ) are distinguished
from the ionization fragments (r,. > ). The r, values for C4H, and C4H3 have large uncertainties

associated with small signal intensities (see Fig. S2).



Table S1 Ionization energies /,

1-32

of selected molecules.

m/z  formula compound 1, (eV) ref.
12 C carbon 11.3 1]
24 Ca dicarbon 11.4 2]
36 Cs3 tricarbon 13.0 [3]
37 CsH linear CsH 9.1 [4]
cyclic C:H 9.8 [4]
48 Cy tetracarbon 12.5 [3]
50 CsHa 1,3-butadiyne 10.2 [5]
51 CsHs  n-CsHs 7.4 [6]
i-C4Hs 8.0 [6]
52 C4Ha 1-buten-3-yne 9.6 [5]
60 Cs pentacarbon 12.3 [3]
61 CsH I-CsH 8.4 [7]
+-CsH 9.8 [7]
62 CsHz pentadiynylidene 8.4 [8]
3-(didehydrovinylidene)cyclopropene 8.6 [8]
63 CsHs i-CsHs 8.2 [9]
n-CsHs 8.3 [9]
64 CsHy 1,3-pentadiyne 9.5 [5]
1,4-pentadiyne 10.3 [5]
66 CsHs 1,3-cyclopentadiene 8.6 [5]
1-penten-3-yne 9.1 [5]
3-penten-1-yne 9.2 [5]
1-buten-3-yne, 2-methyl- 9.3 [5]
68 CsHg 1,3-pentadiene 8.7 [5]
Isoprene 8.9 [5]
cyclopentene 9.0 [5]
2-pentyne 9.4 [5]
1,4-pentadiene 9.6 [5]
1-butyne, 3-methyl- 10.0 [5]
1-pentyne 10.1 [5]
74 CsHa 1,3,5-hexatriyne 9.5 [5]
75 CeH3 1,3,5-tridehydrobenzene 7.2 [10]
76 CesHa benzyne 9.0 [11]
hexa-1,5-diyne-3-ene 9.1 [5]
78 CsHs 1,5-hexadien-e-yne 8.5 [5]
2,4-hexadiyne 8.9 [5]
1,3-hexadien-5-yne 9.2 [5]
benzene 9.3 [5]
1,3-hexadiyne 9.4 [12]
1,4-hexadiyne 9.7 [5]
1,5-hexadiyne 9.9 [5]




80 CsHs 1,3-cyclohexadiene 8.3 [5]
1,3,5-hexatriene 8.3 [5]
1,3-cyclopentadiene, 1-methyl- 8.4 [5]
2-methyl-1,3-cyclopentadiene 8.4 [13]
1,3-cyclopentadiene, 5-methyl- 8.5 [5]
1,4-cyclohexadiene 8.8 [5]
1-hexen-3-yne 8.9 [14]

82 CeéHio  4-methyl-1,3-pentadiene 8.3 [15]
(2),(2)-2,4-hexadiene 8.3 [15]
1,3-pentadiene, 2-methyl- 8.5 [15]
1,3-pentadiene, 3-methyl-, (E)- 8.5 [15]
cis-1,3-hexadiene 8.5 [16]
(E)-1,3-hexadiene 8.6 [15]
1,3-butadiene, 2,3-dimethyl- 8.7 [15]
1,3-butadiene, 2-ethyl- 8.8 [15]
2,3-hexadiene 8.8 [15]
cyclohexane 8.9 [17]
1,2-hexadiene 9.0 [15]
trans-1,4-hexadiene 9.0 [15]
1,4-pentadiene, 2-methyl- 9.2 [15]
1,5-hexadiene 9.3 [18]
3-hexyne 9.3 [15]
4-methyl-2-pentyne 9.3 [15]
1,4-pentadiene, 3-methyl- 9.4 [15]
2-Hexyne 9.4 [18]
1-hexyne 10.1 [19]

90 C7Hs 1,3-cyclopentadiene, 5-ethenylidene- 8.3 [20]
cyclopropane, 1,1-diethynyl- 9.3 [21]

92 C7Hs tetracyclo[3.2.0.0(2,7).0(4,6)]heptane 8.3 [22]
2,5-norbornadiene 8.4 [18]
3-methylene-1,4-cyclohexadiene 8.6 [23]
toluene 8.8 [24]
1,6-heptadiyne 9.9 [25]

98 CsH» 1,3,5,7-octatetrayne 9.1 [26]

100 CsHa vinyltriacetylene 8.8 [26]

102 CsHe (E),(E)-octa-3,5,7-triene-1-yne 7.8 [27]
2,4,6-octatriyne 8.6 [28]
phenylethyne 8.8 [29]

104 CsHs 1,4-cyclohexadiene,3,6-bis(methylene)- 7.9 [15]
styrene 8.5 [30]
1,3,5,7-cyclooctatetraene 8.0 [15]

120 Cio linear Cio 8.8 [31]
cyclic Cio 9.6 [31]

122 CioH> 1,3,5,7,9-decapentayne 8.8 [26]

144 Cn2 cyclic Ci2 8.4 [31]

146 CioHo 1,3,5,7,9,11-dodecahexayne 8.5 [32]
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