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A. Phonon dispersion of SnS; and SnSe, monolayers
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Fig. S1 Phonon dispersion spectra of (a) SnSz and (b) SnSe> monolayers. Both systems exhibit
no significant imaginary frequencies across the Brillouin zone, confirming their dynamical
stability. The minor negative frequency observed near the I' point is attributed to numerical
artifacts that can arise from factors such as the finite supercell size, the choice of
pseudopotentials, or the convergence thresholds. Such minor deviations are common in first-
principles phonon calculations and do not affect the conclusion that SnS, and SnSe,
monolayers are dynamically stable. Similar behavior has been reported for SnSe,! and other
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B. Numerical values of binding energies and cohesive energies

Table S1 Calculated binding energies (in eV) of Li, Na, K, Mg, and Ca atoms on SnS; and
SnSe, monolayers at the M and J adsorption sites. The cohesive energy (E.,) of each metal
atom is also listed for comparison.

SnS, SnSe,
Metal E.on

M-site J-site M-site J-site

Li -1.669 -2.837 -2.847 -2.947 -2.961
Na -1.185 -2.360 -2.365 -2.468 -2.434
K -0.857 -2.577 -2.568 -2.676 -2.673
Mg -1.692 -2.280 -1.762 -2.564 -2.239
Ca -1.991 -3.799 -3.332 -3.950 -3.684

Table S2 Calculation of formation energies (in eV) of Li, Na, K, Mg, and Ca on SnS, and
SnSe, monolayers at the M and J adsorption sites

SnSe, SnS,
Metal
M-site J-site M-site J-site
Li -1.278 -1.292 -0.877 -1.178
Na -1.284 -1.249 -0.860 -1.181
K -1.819 -1.815 -1.451 -1.711
Mg -0.872 -0.546 -0.320 -0.069

Ca -1.959 -1.694 -1.523 -1.341




C. Atomic structure and charge difference of pristine and metal-decorated SnSe,

(a) SnSe, (b) Li-SnSe,

(e) Mg-SnSe, (H) Ca-SnSe,

Fig. S2 Optimized atomic structures and charge difference distributions for pristine and metal-
decorated SnS, monolayers. (a) Pristine SnSe, monolayer showing the two potential adsorption
sites: the M site (above the Sn atom) and the J site (above the lower-layer S atom). Panels (b—
f) show the optimized structures of SnSe, with adsorbed Li, Na, K, Mg, and Ca atoms,
respectively, occupying the M site. The overlaid charge difference maps depict regions of

charge accumulation (yellow) and charge depletion (blue), illustrating the redistribution of
electron density upon metal adsorption.



D. Ab-Initio Molecular Dynamics (AIMD) simulations for single-metal decoration
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Fig. S3 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the Li—
SnS, system, whereas Figure (b) illustrates the radial distribution function between Li and S
atoms.
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Fig. S4 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the Na—
SnS, system, whereas Figure (b) illustrates the radial distribution function between Na and S
atoms.
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Fig. S5 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the K-
SnS, system, whereas Figure (b) illustrates the radial distribution function between K and S
atoms.
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Fig. S6 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the Mg—
SnS, system, whereas Figure (b) illustrates the radial distribution function between Mg and S
atoms.
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Fig. S7 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the Ca—
SnS, system, whereas Figure (b) illustrates the radial distribution function between Ca and S
atoms.
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Fig. S8 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the Li—
SnSe, system, whereas Figure (b) illustrates the radial distribution function between Li and S
atoms.
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Fig. S9 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the Na—
SnSe, system, whereas Figure (b) illustrates the radial distribution function between Na and Se
atoms.
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Fig. S10 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the K—
SnSe, system, whereas Figure (b) illustrates the radial distribution function between K and Se
atoms.
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Fig. S11 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the
Mg—-SnSe, system, whereas Figure (b) illustrates the radial distribution function between Mg
and Se atoms.
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Fig. S12 (a) shows the results of Ab Initio Molecular Dynamics (AIMD) simulations for the
Ca—SnSe, system, whereas Figure (b) illustrates the radial distribution function between Ca
and Se atoms.
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Fig. S13 AIMD simulations for Li-SnS: (a) and Li—SnSe: (b) at 300 K under an external
electric field of —0.5 V/A showing stable energy fluctuation and preserved structural integrity
over 10 ps.
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Fig. S14 AIMD simulations for Na—SnS: (a) and Na—SnSe: (b) at 300 K under an external
electric field of —0.5 V/A showing stable energy fluctuation and preserved structural integrity
over 10 ps.
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Fig. S15 AIMD simulations for K—SnS: (a) and K—SnSe: (b) at 300 K under an external electric
field of —0.5 V/A showing stable energy fluctuation and preserved structural integrity over 10
ps.
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Fig. S16 AIMD simulations for Mg—SnS: (a) and Mg—SnSe: (b) at 300 K under an external
electric field of —0.5 V/A showing unstable energy fluctuation and preserved structural
integrity over 10 ps.
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Fig. S17 AIMD simulations for Ca—SnS: (a) and Ca—SnSe: (b) at 300 K under an external
electric field of —0.5 V/A showing stable energy fluctuation and preserved structural integrity
over 10 ps.



E. The maximum H, coverage configurations for other metal-SnX, systems and their
Density of states

(c) —Total DOS Li-2s — Li-2p — H-1s
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Fig. S18 (a, b) Side and top views of the most stable Li-SnS; configuration at maximum H,
coverage and (c) density of states of the same configuration.
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Fig. S19 (a, b) Side and top views of the most stable Na-SnS, configuration at maximum H,
coverage and (c) density of states of the same configuration.
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Fig. S20 (a, b) Side and top views of the most stable K-

coverage and (c) density of states of the same configuration.
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Fig. S21 (a, b) Side and top views of the most stable Mg-SnS, configuration at maximum H,

coverage and (c) density of states of the same configuration.
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Fig. S22 (a, b) Side and top views of the most stable Li-SnSe, configuration at maximum H,
coverage and (c) density of states of the same configuration.
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Fig. S23 (a, b) Side and top views of the most stable Na-SnSe, configuration at maximum H,
coverage and (c) density of states of the same configuration.
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Fig. S24 (a, b) Side and top views of the most stable K-SnSe, configuration at maximum H,
coverage and (c) density of states of the same configuration.
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Fig. S25 (a, b) Side and top views of the most stable Ca-SnSe, configuration at maximum H,
coverage and (c) density of states of the same configuration.
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Fig. S26 (a, b) Side and top views of the most stable Mg-SnSe, configuration at maximum H,
coverage and (c) density of states of the same configuration.



F. Numerical values of desorption temperatures

Table S3 Desorption temperatures in Kelvin of Ca-decorated SnS, and SnSe, under different

SnS, SnSe,

Number of H, ~ 7 1 10 0.1 1 10
1-H, 166.85 200.64 246.10 149.37 179.68 222.62
2-H, 171.10 205.29 251.71 169.47 203.50 249.61
3-H, 171.10 205.29 251.71 166.96 200.76 246.24
4-H, 159.20 191.50 235.82 156.28 187.98 231.90
5-H, 141.35 170.02 211.84 139.97 168.37 209.99

pressures.
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