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S1 Effective Hamiltonian

To construct the effective Hamiltonian, we apply the frozen core approximation. In this

approach, the molecular spin-orbitals are divided into three sets:

– Core spin-orbitals: low-energy spin-orbitals that are treated as an effective potential in

the Hamiltonian;

– Active spin-orbitals: which are treated explicitly in the Hamiltonian;

– Truncated spin-orbitals: corresponding to high-energy spin-orbitals that are not in-

cluded in the Hamiltonian.

In this work we used a spin-orbital basis, where spin-up (α) and spin-down (β) compo-

nents are interleaved. In this basis the effective Hamiltonian is defined as

Ĥeff =
act∑
pq

h̃pqâ
†
pâq +

1

2

act∑
pqrs

gpqrsâ
†
pâ

†
qârâs + V̂eff, (S.1)

where h̃pq are the effective one-electron integrals, defined as

h̃pq = hpq +
core∑
i

(giqpi − giipq) , (S.2)

with hpq denoting the one-electron integrals from the original Hamiltonian; and the ef-

fective potential term V̂eff, accounting for the core spin-orbitals, is given by

V̂eff =
core∑
i

hii +
1

2

core∑
ij

(gjiij − gjjii) . (S.3)

Note that indices i, j run over the core spin-orbitals, while p, q, r, s run over the active

spin-orbitals.
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S2 Compression of electronic Hamiltonians

In this section, we analyze the impact of Hamiltonian compression on the ground state

energy. Additionally, we examine how the size of the Hamiltonian evolves as the number of

active space orbitals increases, considering different compression thresholds. For this study,

we construct the Hamiltonian of benzene molecule for increasing active space sizes, ranging

from 2 to 12 molecular orbitals, and apply different compression thresholds (1e-2, 1e-3, and

1e-4). The results are calculated using canonical orbitals (Figures S3 and S3), and using

natural orbitals S1 and S2.

Focusing in natural orbitals, Figure S1 (left) shows the number of Hamiltonian terms

as a function of the active space size. As expected, the number of terms increases with

the active space size. For small active spaces, there is almost no difference between the

three compression thresholds. However, beyond 8 orbitals, a significant difference emerges

between 1e-2 and the other two (1e-3 and 1e-4). In this regime, the number of terms is

notably reduced for 1e-2, while for 1e-3 and 1e-4, the difference remains marginal.

Figure S1 (right) illustrates the impact of compression from an energy perspective by

plotting the ground state (GS) energy as a function of the number of Hamiltonian terms.

The results indicate that a compressed Hamiltonian provides a better GS energy-to-terms

ratio compared to the uncompressed Hamiltonian. This trend holds for all compression

thresholds except 1e-2, where, around 1000 terms, the ratio deteriorates, leading to a GS

energy higher than that of the uncompressed Hamiltonian for the same number of terms.

In Figure S2, we analyze the evolution of the GS energy error (defined as the difference

between the GS energy of the compressed and uncompressed Hamiltonians) with respect

to both the active space size (left) and the number of Hamiltonian terms (right). Even

for a compression threshold of 1e-2, the GS energy error remains within chemical accuracy

up to an active space of 6 orbitals. For 1e-3 compression, the GS energy remains below

chemical accuracy up to 12 molecular orbitals. Notably, the difference between 1e-3 and

1e-4 is minimal.
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Examining the energy error as a function of the number of Hamiltonian terms, we observe

that a 1e-3 compression is highly efficient up to 6 active orbitals, yielding a Hamiltonian with

negligible loss relative to the uncompressed one. Beyond this point, the energy error increases

exponentially with both the number of active orbitals and the number of Hamiltonian terms.

These results suggest that as the active space size increases—and thus the accuracy of

the GS energy improves—small terms become more relevant, limiting the extent to which

compression can be applied. However, for active spaces of up to 6 orbitals, a compression

threshold of 1e-2 appears sufficient to maintain the GS energy error below chemical accuracy.

Figure S1: Analysis of the impact of Hamiltonian compression on the number of Hamiltonian
terms and the ground state energy. On the left, we show the number of Hamiltonian terms as
a function of the active space size for different Hamiltonian with three compression thresholds
(1e-2, 1e-3, and 1e-4), compared to the uncompressed Hamiltonian. On the right, we plot the
ground state (GS) energy as a function of the number of Hamiltonian terms. The GS energies
have been computed using the FCI method for three different compression thresholds (1e-3,
1e-4, and 1e-5). The Hamiltonian is expressed in the basis of natural Orbitals.
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Figure S2: Analysis of the energy error with respect to different Hamiltonian compression
thresholds (1e-2, 1e-3, and 1e-4). On the left, we show the ground state energy error as a
function of the active space size. On the right, we present the GS energy error as a function
of the number of Hamiltonian terms. The ground state energy energies have been computed
using the FCI method. The Hamiltonian is expressed in the basis of natural Orbitals.

Examining the results obtained using canonical orbitals (Figures S3 and S4), we observe

that the use of canonical orbitals is detrimental compared to the use of natural orbitals. The

energy-to-number-of-terms ratio presented in Figure S3 (right) is significantly worse than

that observed with natural orbitals, where compression provides little to no benefit at any

level. Furthermore, we observe that the GS energy error with respect to the uncompressed

Hamiltonian (Figure S4) is substantially higher when using canonical orbitals, frequently

exceeding chemical accuracy.

This suggests that the use of natural orbitals leads to Hamiltonians where the most

important interactions are concentrated in a smaller number of terms, making the compres-

sion procedure more effective. However, it is important to note that as higher precision is

required, the contribution of small Hamiltonian terms becomes more significant, and their

impact on the ground state energy may no longer be negligible.
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Figure S3: Analysis of the impact of Hamiltonian compression on the number of Hamiltonian
terms and the ground state energy. On the left, we show the number of Hamiltonian terms as
a function of the active space size for different Hamiltonian with three compression thresholds
(1e-2, 1e-3, and 1e-4), compared to the uncompressed Hamiltonian. On the right, we plot the
ground state (GS) energy as a function of the number of Hamiltonian terms. The GS energies
have been computed using the FCI method for three different compression thresholds (1e-3,
1e-4, and 1e-5). The Hamiltonian is expressed in the basis of canonical orbitals.

Figure S4: Analysis of the energy error with respect to different Hamiltonian compression
thresholds (1e-2, 1e-3, and 1e-4). On the left, we show the ground state energy error as a
function of the active space size. On the right, we present the GS energy error as a function
of the number of Hamiltonian terms. The ground state energy energies have been computed
using FCI method with a bond dimension of 200. The Hamiltonian is expressed in the basis
of canonical Orbitals.

To evaluate the impact of Hamiltonian compression in the fermionic-operator basis, we

performed a series of exact simulations of benzene molecule with a active space of 4 orbitals

using our qubit-ADAPT implementation with a trotterized ansatz analogous to the circuits

deployed in the quantum-hardware experiments, and tested multiple compression thresholds.

The results, shown in Figure S5, indicate that a compression threshold of (1e-2) yields a

S7



converged energy with an error of approximately (1e-3) Ha relative to the exact ground state,

whereas a threshold of (1e-3) reproduces the uncompressed Hamiltonian nearly exactly. The

effect of the (1e-2) compression is negligible for the first four selected operators and remains

very small up to the first seven; beyond this point, deviations become more noticeable. We

do not include smaller compression thresholds, as the results for (1e-2) and the uncompressed

Hamiltonian are essentially indistinguishable.

Figure S5: Qubit-ADAPT exact simulation of benzene (4 active orbitals) using a hamilto-
nian with different compression thresholds (1e-2, 1e-3) in the basis of natural orbitals and
computed using a trotterized ansatz (1 step). On the left, we show the energy at each
ADAPT-VQE step as a function of the number of operators, on the right the energy error
with respect to the exact ground state.

S3 Fermion vs. Qubit operator pools

The quantum circuits generated by fermionic ADAPT-VQE are constructed by mapping

fermionic operators to qubit operators and implemented on quantum hardware using a first-

order Trotter approximation. We note that this Trotterization can potentially break some

symmetries.
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Figure S6: Ground state energy (in Hartrees) as a function of the number of iterations for
the simulation of the benzene molecule with fermion (green) and qubit (blue) ADAPT-VQE
algorithm.

Figure S7: Comparison of the computational cost of VQE algorithms using fermion vs qubit
operators for benzene molecule. On the left there is a break down of the total (accumulated)
number of CNOTs used for all circuits in the full simulation. We separate this number in
energy evaluations and gradient evaluations. On the right there is an analysis of the circuit
depths of the circuits used to evaulate the energy and the gradients. We show the maxium
circuit depth and the average circuit depth.
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Figure S8: Comparison of the circuit depth (of the circuit used to evaluate the energy) vs
energy obtained from an ADAPT-VQE simulation (exact). On the left fermion-ADAPT-
VQE, on the right qubit-ADAPT.

S4 Classical optimizer

Figure S9: Energy surface generated by the scan over the coefficients of a two operator
qubit-ADAPT ansatz of H4 molecule. Left figure shows the scan along coefficients 1 and 2
and right figure is the scan along coefficients 2 and 3
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Figure S10: (Left) Ground state energy and (right) energy evaluations of benzene molecule
along the qubit-ADAPT iterations using COBYLA (green) and mod-COBYLA (blue). Each
point corresponds to the average of 30 simulations using 1000 shots. Default tolerance in
standard COBYLA is 10−3 Hartrees.

Figure S11: (Left) Ground state energy and (right) energy evaluations per iteration of ben-
zene molecule along the qubit-ADAPT iterations using COBYLA (green) and mod-COBYLA
(blue). Each point corresponds to the average of 30 simulations using 5000 shots. Default
tolerance in standard COBYLA is 10−3 Hartrees.

To estimate the cost of the Qubit-ADAPT algorithm in the quantum hardware we have

analyzed the number of measurements that will be necessary per ADAPT-VQE iteration.

For this we account for the number of qubit operators to be measures for the evaluation of

the energy (89 qubit operators) and the gradients (46 qubit operators). This is summarized
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in Figure S12, where we plot the number of energy measurements per iteration using both

COBYLA and mod-COBYLA and the number of measurements needed for the gradients

per iteration.

Figure S12: (Left) measurements per iteration of a simulation of the benzene molecule
with qubit-ADAPT using COBYLA and mod-COBYLA. (Right) measurements for the same
simulation as a function of the energy at each iteration. Qiskit Aer simulator with 500 shots
per measurement where used.

As shown, the computational cost of the energy evaluation per iteration increases ap-

proximately linearly with the number of operators, whereas the gradient evaluation exhibits

a constant cost across iterations, and is determined by the product of the number of shots

(500), the number of qubit operators in the pool (40), and the number of qubit terms ap-

pearing in the Hamiltonian commutators (46). This leads to a total of 920000 measurements

per iteration. For small iteration counts, the gradient evaluation dominates the total com-

putational effort; however, as the number of operators grows and the simulation advances,

its relative contribution becomes smaller, consistent with the expected scaling behaviour.

S4.1 Stretched H4 model

To test the mod-COBLYLA with highly correlated system we have analyzed the linear H4

molecule with bond distance of 2 Å computed with the STO-3G basis set. For this example

we have also used Qiskit Aer simulator to compute the energy with 1000 shots. In figure S13
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we show a comparison of a the average of 30 qubit-ADAPT simulations using both COBYLA

and mod-COBYLA. In the left plot we show the energy as a function of each iteration step

and on the right we plot the number of energy evaluations. For reference we include two

exact simulation computed using Fermion operators and qubit operators.

In this example we observe a significant improvement in the convergence of the energy

using mod-COBYLA with respect to COBYLA, however they converge to a similar final

energy value. Also we observe that for each iteration of the ADAPT-VQE algorithm the

number of energy evaluations required for the optimization is lower using mod-COBYLA.

Looking at the error bars associates to the values presented in these figures we also observe

that dispersion obtained with mod-COBYLA is smaller dispersion than ussing COBYLA.

This indicates that the results are more reliable using mod-COBYLA. This can be observed

in figure S14 where we compare the energy distribution of the final converged energy using

both COBYLA and mod-COBYLA. In this figure we observe that the average energy using

COBYLA is slighly smaller but the deviation of the energy distribution is much larger than

mod-COBYLA.

Figure S13: Molecule H4., Comparison of the optimization using COBYLA and mod-
COBYLA using a value of 0.1 for rhobeg. Number of shots is 1000. Default tolerance
is 1e-3 Ha.
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Figure S14: Molecule H4. Distribution of the energy of the converged ground state. Com-
parison of the optimization using COBYLA and mod-COBYLA. Number of shots is 1000.
Default tolerance is 1e-3 Ha.

Figure S15: Molecule H4. Comparison of the optimization using COBYLA and mod-
COBYLA. Fermion vs qubit operators using a value of 0.1 for rhobeg. Number of shots
is 1000. Energy as a function of the iterations (left) and evaluations of the energy (right)
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Figure S16: Molecule H4. Comparison of the optimization using COBYLA and mod-
COBYLA. Fermion vs qubit operators using a value of 0.1 for rhobeg. Number of shots
is 1000

Figure S17: Molecule H4. Comparison of the optimization using COBYLA and mod-
COBYLA. Exact energy evaluation vs ADAPT iterations (left) and energy error with respect
to FCI (right)
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Figure S18: Molecule H4. Comparison of the optimization using COBYLA and mod-
COBYLA. Energy evaluations vs ADAPT iterations

We conducted a targeted ablation study to assess the performance of the mod-COBYLA

algorithm relative to the original COBYLA implementation in the scipy library. To this

end, we performed a series of Qubit-ADAPT calculations on the H4 molecule using Qiskit

Aer simulations, systematically varying the tolerance parameter of mod-COBYLA. For each

parameter set, we carried out 30 independent repetitions to account for statistical noise. In

mod-COBYLA, the tolerance is set to the standard error of the energy measurement. In

this analysis, we multiply this baseline tolerance by a scaling parameter (“tolerance factor”)

to examine the stability and suitability of the criterion. We also carried out the same

calculations with and without the pre-optimization scan of the initial guess.

The results, shown in Figures S19–S20, indicate that enabling the pre-optimization scan

increases the number of energy evaluations required for convergence, yet in general improves

the convergence the final energy estimate and reduces its standard error. Varying the toler-

ance factor reveals the expected trade-off: larger tolerances lead to less accurate converged

energies but fewer energy evaluations, whereas smaller tolerances improve accuracy at the

expense of increased computational cost. Overall, we find that setting the tolerance equal to

the standard error of the energy measurement, as done in mod-COBYLA, offers a balanced
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compromise between accuracy and efficiency.

Comparing these results with the original COBYLA algorithm (green line), we observe

that mod-COBYLA systematically yields more accurate energies, as evidenced by the lower

standard errors. For a tolerance factor equal to 1, the converged energies are nearly identical

to those of the original COBYLA, but require consistently fewer energy evaluations. This

further supports that our chosen tolerance criterion provides a favourable balance between

accuracy and computational cost.

Figure S19: Comparison of optimization performance using the standard COBYLA algo-
rithm and the modified mod-COBYLA variant for the H4 molecule. The panels show the
converged Qubit-ADAPT energy (left) and the corresponding standard error (right) as a
function of the tolerance factor. The green line represents the original COBYLA imple-
mentation in scipy. Blue symbols correspond to mod-COBYLA calculations including the
pre-optimization scan of the initial guess, whereas red symbols indicate mod-COBYLA with-
out the scan. For each tolerance factor, 30 independent repetitions were performed to capture
statistical fluctuations. The tolerance in mod-COBYLA is defined as the standard error of
the energy measurement, multiplied here by the indicated tolerance factor.
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Figure S20: Comparison of optimization performance using the standard COBYLA algo-
rithm and the modified mod-COBYLA variant for the H4 molecule. The panels show the
number of energy evaluations required to converge the Qubit-ADAPT simulation (left) and
the corresponding standard error (right) as a function of the tolerance factor. The green
line represents the original COBYLA implementation in scipy. Blue symbols correspond to
mod-COBYLA calculations including the pre-optimization scan of the initial guess, whereas
red symbols indicate mod-COBYLA without the scan. For each tolerance factor, 30 in-
dependent repetitions were performed to capture statistical fluctuations. The tolerance in
mod-COBYLA is defined as the standard error of the energy measurement, multiplied here
by the indicated tolerance factor.

S5 Circuit optimization

Table S1: Circuit depth of the ansatz used at each iteration step of the Qubit-ADAPT using
the two different CNOT orientations and the one generated by our algorithm (Optimal).
For each version we show also the depth of the transpiled circuit for IBM torino quantum
computer (ISA depth) using the cascade pattern.

Standard Reverse Optimal

# op. depth CNOT ISA depth CNOT ISA depth CNOT ISA

0 1 0 1 1 0 1 1 0 1
1 10 6 22 8 6 24 8 6 24
2 10 12 82 8 12 74 8 12 80
3 19 18 126 17 18 132 17 18 132
4 35 32 173 33 32 181 33 32 181
5 42 38 207 39 38 215 39 38 215
6 44 44 197 41 44 215 41 44 215
7 57 54 242 54 54 253 54 54 253
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Table S2: Circuit depth of the ansatz used at each iteration step of the Fermion-ADAPT
using the two different CNOT orientations and the one generated by our algorithm (Optimal).
For each version we show also the depth of the transpiled circuit for IBM torino quantum
computer (ISA depth) using the cascade pattern.

Standard Reverse Optimal

# op. depth CNOT ISA depth CNOT ISA depth CNOT ISA

0 1 0 1 1 0 1 1 0 1
1 73 48 110 68 48 64 67 46 64
2 73 96 232 68 96 149 67 92 149
3 696 576 1244 683 576 1059 616 514 1060
4 1110 896 1949 1090 896 1631 979 794 1628
5 1182 944 2072 1157 944 1719 1045 840 1726
6 1254 992 2074 1157 992 1720 1045 886 1718
7 1408 1040 2183 1224 1040 2293 1111 932 1790

S6 Job Size Limitations in IBM Quantum Computers

To estimate the computational limitations of IBM quantum computers, we submitted a series

of jobs using the Estimator primitive from the IBM Qiskit Runtime. These jobs varied in

both the number of two-qubit gates and the number of Pauli observables measured.

The data shown in the plot below reflects the limitations observed at the time of writ-

ing this manuscript. A job was considered not allowed if the server returned an error at

submission time, indicating that the circuit exceeded current resource or policy constraints.
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Figure S21: Maximum job size accepted by various IBM quantum computers, measured as
the product of the number of two-qubit gates and the number of measured Pauli operators
in the observable. IBM Brussels was tested 3 times
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S7 Quantum hardware experiments

Figure S22: Energy evaluations (in Ha) with Qubit-ADAPT ansätze with 0-7 qubit operators
measured in the IBM Torino computer using 9000 shots per sample, CASCADE pattern
and error mitigation. The coefficients of the ansatz are obtained from an exact calculation.
Horizontal lines indicate the exact HF (green) and FCI with 4 active orbitals and 4 active
electrons (gray). The energy difference between HF and exact GS (correlation energy) is
53.9 mHa.
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Figure S23: Energy evaluations (in Ha) with Qubit-ADAPT ansätze with 0-7 qubit operators
measured in the IBM Torino computer using 9000 shots per sample, FAN pattern and error
mitigation. The coefficients of the ansatz are obtained from an exact calculation. Horizontal
lines indicate the exact HF (green) and FCI with 4 active orbitals and 4 active electrons
(gray). The energy difference between HF and exact GS (correlation energy) is 53.9 mHa.
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Table S3: Standard energy errors and residual biases obtained on the IBM torino quantum
machine using the CASCADE pattern, with and without error mitigation. The ISA-compiled
circuit depth at each ansatz size (number of operators) is additionally provided.

mitigated non-mitigated

# op ISA depth std. err. residual bias std. err. residual bias

0 1 0.009640 0.007750 0.004314 0.065547
1 24 0.009786 0.014616 0.008208 0.130618
2 80 0.048527 0.024430 0.011697 0.286382
3 132 0.053708 0.065366 0.016977 0.349918
4 181 0.072687 0.255181 0.022630 0.391574
5 215 0.092860 0.092992 0.018493 0.421805
6 215 0.095753 0.060726 0.020422 0.525207
7 253 0.167928 0.083850 0.018801 0.541124

In Tables S3 and S4, we report the results obtained from the quantum-hardware calculations.

These tables compare the outcomes of the mitigated and non-mitigated calculations. As

observed, the use of error mitigation reduces the residual bias, at the expense of increasing

the standard error relative to the non-mitigated results. This behaviour is expected and

appears in both circuit patterns. As discussed in the main text, the reduction in residual

bias is more pronounced for the FAN pattern, making it more effective than the CASCADE

pattern. This improvement can be attributed to the lower ISA circuit depth achieved in the

FAN topology, as shown in the tables.
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Table S4: Standard energy errors and residual biases obtained on the IBM torino quantum
machine using the FAN pattern, with and without error mitigation. The circuit depth of the
ISA-compiled circuits at each iteration (ISA depth) is also reported.

mitigated non-mitigated

# op ISA depth std. err. residual bias std. err. residual bias

0 1 0.005037 0.000086 0.004314 0.065547
1 19 0.005471 0.036794 0.004525 0.099224
2 70 0.024646 0.160981 0.014175 0.278944
3 124 0.017337 0.164561 0.010135 0.306543
4 155 0.040834 0.182286 0.009426 0.370087
5 184 0.030711 0.153979 0.013950 0.442582
6 195 0.024272 0.150725 0.014881 0.347148
7 213 0.042336 0.212549 0.008964 0.345339

S8 Error-mitigation on IBM Hardware

All hardware results on IBM-Torino using error mitigation were obtained using the Qiskit

Runtime Estimator primitive with resilience level = 2. At this level, the runtime auto-

matically enables a Zero Noise Extrapolation (ZNE) procedure combined with measurement

error mitigation.

ZNE was performed using the built-in noise-scaling method based on gate folding, with

scaling factors 1,3,5. The extrapolation to the zero-noise limit employed an exponential fit

of the measured expectation values with linear fallback when variance is large.

Pauli-based TREX (Twirled Readout Error eXtinction) is applied with a per-job cali-

bration cadence, meaning that the calibration circuits required for the readout-mitigation

model are freshly executed for each submitted job rather than reused across runs. TREX

relies on twirled measurements, implemented by randomly replacing each measurement gate

with a three-step sequence consisting of (i) application of a Pauli-X gate, (ii) measurement,

and (iii) classical bit-flip post-processing.

The twirling randomization mode is set to automatic (IBM Runtime default), which

selects random twirling operations according to the backend configuration and the active
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mitigation pipeline, as specified in the IBM Runtime twirling options documentation.

S9 Thermal relaxation noise model

In Figure S24, we present an additional view of the data from the simulations using the noise

models described in the main text. This representation highlights more clearly that, under

the noise model, ansätze with fewer operators are less affected by decoherence, while larger

ansätze systematically yield higher energies. As the coherence factor increases, the energies

obtained for all ansatz sizes converge toward their exact values.

In Figure S24 (right), we show the number of ansätze with residual biases smaller than

1 mHa. This plot reveals that, for coherence factors of approximately 100 or higher, all

ansätze fall below this threshold.

Figure S24: Simulation of the benzene molecule using qubit-ADAPT with a thermal re-
laxation noise model in Qiskit Aer. (Left) Energy of the ansatz with different numbers of
operators as a function of the coherence factor; horizontal lines indicate the exact energies
for each ansatz size. (Right) Number of operators exhibiting residual biases larger than 1
mHa as a function of the coherence factor.

S9.1 Instruction execution times

The instruction times used in our Qubit-ADAPT simulations with the thermal relaxation

noise model are summarized in Table S5, corresponding to:

• Parameterized single-qubit rotation gates
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– U1: phase shift gate.

– U2: single-qubit rotation with two parameters.

– U3: general single-qubit unitary rotation with three parameters.

• CX: CNOT gate.

• Reset: reset operation initializing a qubit back to the |0⟩ state.

• Measure: the measurement operation collapses a qubit’s state into either |0⟩ or |1⟩ and

records the result.

Table S5: Instruction execution times (in ns) used in the thermal relaxation noise model.

instruction time
U1 0
U2 50
U3 100
CX 300
Reset 1000
Measure 1000
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