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S1 Effective Hamiltonian

To construct the effective Hamiltonian, we apply the frozen core approximation. In this
approach, the molecular spin-orbitals are divided into three sets:
— Core spin-orbitals: low-energy spin-orbitals that are treated as an effective potential in
the Hamiltonian;
— Active spin-orbitals: which are treated explicitly in the Hamiltonian;
— Truncated spin-orbitals: corresponding to high-energy spin-orbitals that are not in-
cluded in the Hamiltonian.

In this work we used a spin-orbital basis, where spin-up («) and spin-down () compo-

nents are interleaved. In this basis the effective Hamiltonian is defined as

act act
” = i 1 e N
Hesr = Z hpqa;aq + 5 Z gpqrsajjagaras + Vi, (S.1)
pq pqrs

where ﬁpq are the effective one-electron integrals, defined as

core

ilpq = hyg + Z (Gigpi — Yiipg) » (S5.2)

with h,, denoting the one-electron integrals from the original Hamiltonian; and the ef-

fective potential term ‘A/eﬁ‘, accounting for the core spin-orbitals, is given by

core core

- 1
Vet = Z hii + B Z (Giiij — Yjgii) - (S.3)
7 ij

Note that indices i, j run over the core spin-orbitals, while p, ¢, 7, s run over the active

spin-orbitals.

S3



S2 Compression of electronic Hamiltonians

In this section, we analyze the impact of Hamiltonian compression on the ground state
energy. Additionally, we examine how the size of the Hamiltonian evolves as the number of
active space orbitals increases, considering different compression thresholds. For this study,
we construct the Hamiltonian of benzene molecule for increasing active space sizes, ranging
from 2 to 12 molecular orbitals, and apply different compression thresholds (le-2, le-3, and
le-4). The results are calculated using canonical orbitals (Figures S3 and S3), and using
natural orbitals S1 and S2.

Focusing in natural orbitals, Figure S1 (left) shows the number of Hamiltonian terms
as a function of the active space size. As expected, the number of terms increases with
the active space size. For small active spaces, there is almost no difference between the
three compression thresholds. However, beyond 8 orbitals, a significant difference emerges
between le-2 and the other two (le-3 and le-4). In this regime, the number of terms is
notably reduced for le-2, while for 1e-3 and le-4, the difference remains marginal.

Figure S1 (right) illustrates the impact of compression from an energy perspective by
plotting the ground state (GS) energy as a function of the number of Hamiltonian terms.
The results indicate that a compressed Hamiltonian provides a better GS energy-to-terms
ratio compared to the uncompressed Hamiltonian. This trend holds for all compression
thresholds except 1le-2, where, around 1000 terms, the ratio deteriorates, leading to a GS
energy higher than that of the uncompressed Hamiltonian for the same number of terms.

In Figure S2, we analyze the evolution of the GS energy error (defined as the difference
between the GS energy of the compressed and uncompressed Hamiltonians) with respect
to both the active space size (left) and the number of Hamiltonian terms (right). Even
for a compression threshold of le-2, the GS energy error remains within chemical accuracy
up to an active space of 6 orbitals. For le-3 compression, the GS energy remains below
chemical accuracy up to 12 molecular orbitals. Notably, the difference between le-3 and

le-4 is minimal.
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Examining the energy error as a function of the number of Hamiltonian terms, we observe
that a le-3 compression is highly efficient up to 6 active orbitals, yielding a Hamiltonian with
negligible loss relative to the uncompressed one. Beyond this point, the energy error increases
exponentially with both the number of active orbitals and the number of Hamiltonian terms.

These results suggest that as the active space size increases—and thus the accuracy of
the GS energy improves—small terms become more relevant, limiting the extent to which
compression can be applied. However, for active spaces of up to 6 orbitals, a compression

threshold of 1le-2 appears sufficient to maintain the GS energy error below chemical accuracy.
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Figure S1: Analysis of the impact of Hamiltonian compression on the number of Hamiltonian
terms and the ground state energy. On the left, we show the number of Hamiltonian terms as
a function of the active space size for different Hamiltonian with three compression thresholds
(le-2, 1e-3, and le-4), compared to the uncompressed Hamiltonian. On the right, we plot the
ground state (GS) energy as a function of the number of Hamiltonian terms. The GS energies
have been computed using the FCI method for three different compression thresholds (1e-3,
le-4, and le-5). The Hamiltonian is expressed in the basis of natural Orbitals.
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Figure S2: Analysis of the energy error with respect to different Hamiltonian compression
thresholds (1le-2, 1le-3, and le-4). On the left, we show the ground state energy error as a
function of the active space size. On the right, we present the GS energy error as a function
of the number of Hamiltonian terms. The ground state energy energies have been computed
using the FCI method. The Hamiltonian is expressed in the basis of natural Orbitals.

Examining the results obtained using canonical orbitals (Figures S3 and S4), we observe
that the use of canonical orbitals is detrimental compared to the use of natural orbitals. The
energy-to-number-of-terms ratio presented in Figure S3 (right) is significantly worse than
that observed with natural orbitals, where compression provides little to no benefit at any
level. Furthermore, we observe that the GS energy error with respect to the uncompressed
Hamiltonian (Figure S4) is substantially higher when using canonical orbitals, frequently
exceeding chemical accuracy.

This suggests that the use of natural orbitals leads to Hamiltonians where the most
important interactions are concentrated in a smaller number of terms, making the compres-
sion procedure more effective. However, it is important to note that as higher precision is
required, the contribution of small Hamiltonian terms becomes more significant, and their

impact on the ground state energy may no longer be negligible.
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Figure S3: Analysis of the impact of Hamiltonian compression on the number of Hamiltonian
terms and the ground state energy. On the left, we show the number of Hamiltonian terms as
a function of the active space size for different Hamiltonian with three compression thresholds
(le-2, 1e-3, and le-4), compared to the uncompressed Hamiltonian. On the right, we plot the
ground state (GS) energy as a function of the number of Hamiltonian terms. The GS energies
have been computed using the FCI method for three different compression thresholds (1e-3,
le-4, and le-5). The Hamiltonian is expressed in the basis of canonical orbitals.
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Figure S4: Analysis of the energy error with respect to different Hamiltonian compression
thresholds (1le-2, 1e-3, and le-4). On the left, we show the ground state energy error as a
function of the active space size. On the right, we present the GS energy error as a function
of the number of Hamiltonian terms. The ground state energy energies have been computed
using FCI method with a bond dimension of 200. The Hamiltonian is expressed in the basis
of canonical Orbitals.

To evaluate the impact of Hamiltonian compression in the fermionic-operator basis, we
performed a series of exact simulations of benzene molecule with a active space of 4 orbitals
using our qubit-ADAPT implementation with a trotterized ansatz analogous to the circuits
deployed in the quantum-hardware experiments, and tested multiple compression thresholds.

The results, shown in Figure S5, indicate that a compression threshold of (1e-2) yields a
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converged energy with an error of approximately (1e-3) Ha relative to the exact ground state,
whereas a threshold of (1e-3) reproduces the uncompressed Hamiltonian nearly exactly. The
effect of the (1e-2) compression is negligible for the first four selected operators and remains
very small up to the first seven; beyond this point, deviations become more noticeable. We
do not include smaller compression thresholds, as the results for (1e-2) and the uncompressed

Hamiltonian are essentially indistinguishable.
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Figure S5: Qubit-ADAPT exact simulation of benzene (4 active orbitals) using a hamilto-
nian with different compression thresholds (le-2, 1le-3) in the basis of natural orbitals and
computed using a trotterized ansatz (1 step). On the left, we show the energy at each
ADAPT-VQE step as a function of the number of operators, on the right the energy error
with respect to the exact ground state.

S3 Fermion vs. Qubit operator pools

The quantum circuits generated by fermionic ADAPT-VQE are constructed by mapping
fermionic operators to qubit operators and implemented on quantum hardware using a first-
order Trotter approximation. We note that this Trotterization can potentially break some

symmetries.
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Figure S6: Ground state energy (in Hartrees) as a function of the number of iterations for
the simulation of the benzene molecule with fermion (green) and qubit (blue) ADAPT-VQE
algorithm.

900
180000 I Qubit [ Fermion
B Qubit 1 Fermion
675
135000
g
5 £
8 H
© 90000 = 450
s £
5 (5}
a
E
]
4
45000 225
0 0
Energy Gradient Total Ener. max Ener. ave. Grad. Max Grad. Ave.

Figure S7: Comparison of the computational cost of VQE algorithms using fermion vs qubit
operators for benzene molecule. On the left there is a break down of the total (accumulated)
number of CNOTSs used for all circuits in the full simulation. We separate this number in
energy evaluations and gradient evaluations. On the right there is an analysis of the circuit
depths of the circuits used to evaulate the energy and the gradients. We show the maxium
circuit depth and the average circuit depth.
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Figure S8: Comparison of the circuit depth (of the circuit used to evaluate the energy) vs
energy obtained from an ADAPT-VQE simulation (exact). On the left fermion-ADAPT-
VQE, on the right qubit-ADAPT.

S4 Classical optimizer
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Figure S9: Energy surface generated by the scan over the coefficients of a two operator
qubit-ADAPT ansatz of Hy molecule. Left figure shows the scan along coefficients 1 and 2
and right figure is the scan along coefficients 2 and 3
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Figure S10: (Left) Ground state energy and (right) energy evaluations of benzene molecule
along the qubit-ADAPT iterations using COBYLA (green) and mod-COBYLA (blue). Each
point corresponds to the average of 30 simulations using 1000 shots. Default tolerance in
standard COBYLA is 1073 Hartrees.

Energies Energy evaluations

60
“+ COBYLA MOD 0.1
+ GOBYLAMOD 0.1
COBYLA 0.1 COBYLA 0.1

-227.880

45

-227.895 | % ot
. i___
. 'ﬁ‘
. ‘¢ B
s, 30 -i‘
) ) -
N
.
» Phs :I:
% >
-227.925 s 15 ,'I
\é % K
o S B K
——lh. ,
-= .--% .
.
0 1 2 3 4 5 6 7 8

Iterations Iterations

-227.910

Energy [Ha]
Energy evaluations

-227.940

Figure S11: (Left) Ground state energy and (right) energy evaluations per iteration of ben-
zene molecule along the qubit-ADAPT iterations using COBYLA (green) and mod-COBYLA
(blue). Each point corresponds to the average of 30 simulations using 5000 shots. Default
tolerance in standard COBYLA is 1073 Hartrees.

To estimate the cost of the Qubit-ADAPT algorithm in the quantum hardware we have
analyzed the number of measurements that will be necessary per ADAPT-VQE iteration.
For this we account for the number of qubit operators to be measures for the evaluation of

the energy (89 qubit operators) and the gradients (46 qubit operators). This is summarized
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in Figure S12, where we plot the number of energy measurements per iteration using both

COBYLA and mod-COBYLA and the number of measurements needed for the gradients

per iteration.
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Figure S12: (Left) measurements per iteration of a simulation of the benzene molecule
with qubit-ADAPT using COBYLA and mod-COBYLA. (Right) measurements for the same
simulation as a function of the energy at each iteration. Qiskit Aer simulator with 500 shots
per measurement where used.

As shown, the computational cost of the energy evaluation per iteration increases ap-
proximately linearly with the number of operators, whereas the gradient evaluation exhibits
a constant cost across iterations, and is determined by the product of the number of shots
(500), the number of qubit operators in the pool (40), and the number of qubit terms ap-
pearing in the Hamiltonian commutators (46). This leads to a total of 920000 measurements
per iteration. For small iteration counts, the gradient evaluation dominates the total com-
putational effort; however, as the number of operators grows and the simulation advances,

its relative contribution becomes smaller, consistent with the expected scaling behaviour.

S4.1 Stretched H; model

To test the mod-COBLYLA with highly correlated system we have analyzed the linear Hy
molecule with bond distance of 2 A computed with the STO-3G basis set. For this example

we have also used Qiskit Aer simulator to compute the energy with 1000 shots. In figure S13
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we show a comparison of a the average of 30 qubit-ADAPT simulations using both COBYLA
and mod-COBYLA. In the left plot we show the energy as a function of each iteration step
and on the right we plot the number of energy evaluations. For reference we include two
exact simulation computed using Fermion operators and qubit operators.

In this example we observe a significant improvement in the convergence of the energy
using mod-COBYLA with respect to COBYLA, however they converge to a similar final
energy value. Also we observe that for each iteration of the ADAPT-VQE algorithm the
number of energy evaluations required for the optimization is lower using mod-COBYLA.
Looking at the error bars associates to the values presented in these figures we also observe
that dispersion obtained with mod-COBYLA is smaller dispersion than ussing COBYLA.
This indicates that the results are more reliable using mod-COBYLA. This can be observed
in figure S14 where we compare the energy distribution of the final converged energy using
both COBYLA and mod-COBYLA. In this figure we observe that the average energy using

COBYLA is slighly smaller but the deviation of the energy distribution is much larger than

mod-COBYLA.
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Figure S13: Molecule Hy., Comparison of the optimization using COBYLA and mod-
COBYLA using a value of 0.1 for rhobeg. Number of shots is 1000. Default tolerance

is le-3 Ha.
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Figure S14: Molecule Hy. Distribution of the energy of the converged ground state. Com-
parison of the optimization using COBYLA and mod-COBYLA. Number of shots is 1000.

Default tolerance is le-3 Ha.

-1.500 90 -
# Qubit exact (COBY! . ! '
Fermion exa(ct (COIB~¢)LA) *# Qubit exact (COBYLA) "
" Fermion exact (COBYLA) n
- Qubit (COBYLA-MOD) - Qublt (COBYLA-MOD) + "
[ Qubit (COBYLA) ubit ( -MOD) h
. Qubit (COBYLA) ;! "
-1.600 "\ 68 1 |:
‘t N Y
. g 1 '\'
—_ o 4
g Y i 1 é
= o = ‘
g -1.700 S g 45 .
g . 5 =
w “ B )
X il o A A
Ay * -
s y .
-1.800 . 23 e S
o oF v
AL L 3
-~ ]
[ O Y SR S *
- . - - -. - ‘ - .- ) -.- 'I
-1.900 -0 0 &
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Iterations Iterations.
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Figure S17: Molecule Hy.
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Figure S18: Molecule Hy. Comparison of the optimization using COBYLA and mod-
COBYLA. Energy evaluations vs ADAPT iterations

We conducted a targeted ablation study to assess the performance of the mod-COBYLA
algorithm relative to the original COBYLA implementation in the scipy library. To this
end, we performed a series of Qubit-ADAPT calculations on the Hy molecule using Qiskit
Aer simulations, systematically varying the tolerance parameter of mod-COBYLA. For each
parameter set, we carried out 30 independent repetitions to account for statistical noise. In
mod-COBYLA, the tolerance is set to the standard error of the energy measurement. In
this analysis, we multiply this baseline tolerance by a scaling parameter (“tolerance factor”)
to examine the stability and suitability of the criterion. We also carried out the same
calculations with and without the pre-optimization scan of the initial guess.

The results, shown in Figures S19-520, indicate that enabling the pre-optimization scan
increases the number of energy evaluations required for convergence, yet in general improves
the convergence the final energy estimate and reduces its standard error. Varying the toler-
ance factor reveals the expected trade-off: larger tolerances lead to less accurate converged
energies but fewer energy evaluations, whereas smaller tolerances improve accuracy at the
expense of increased computational cost. Overall, we find that setting the tolerance equal to

the standard error of the energy measurement, as done in mod-COBYLA, offers a balanced
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compromise between accuracy and efficiency.

Comparing these results with the original COBYLA algorithm (green line), we observe
that mod-COBYLA systematically yields more accurate energies, as evidenced by the lower
standard errors. For a tolerance factor equal to 1, the converged energies are nearly identical
to those of the original COBYLA, but require consistently fewer energy evaluations. This
further supports that our chosen tolerance criterion provides a favourable balance between

accuracy and computational cost.
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Figure S19: Comparison of optimization performance using the standard COBYLA algo-
rithm and the modified mod-COBYLA variant for the H; molecule. The panels show the
converged Qubit-ADAPT energy (left) and the corresponding standard error (right) as a
function of the tolerance factor. The green line represents the original COBYLA imple-
mentation in scipy. Blue symbols correspond to mod-COBYLA calculations including the
pre-optimization scan of the initial guess, whereas red symbols indicate mod-COBYLA with-
out the scan. For each tolerance factor, 30 independent repetitions were performed to capture
statistical fluctuations. The tolerance in mod-COBYLA is defined as the standard error of
the energy measurement, multiplied here by the indicated tolerance factor.
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Figure S20: Comparison of optimization performance using the standard COBYLA algo-
rithm and the modified mod-COBYLA variant for the Hy molecule. The panels show the
number of energy evaluations required to converge the Qubit-ADAPT simulation (left) and
the corresponding standard error (right) as a function of the tolerance factor. The green
line represents the original COBYLA implementation in scipy. Blue symbols correspond to
mod-COBYLA calculations including the pre-optimization scan of the initial guess, whereas
red symbols indicate mod-COBYLA without the scan. For each tolerance factor, 30 in-
dependent repetitions were performed to capture statistical fluctuations. The tolerance in
mod-COBYLA is defined as the standard error of the energy measurement, multiplied here
by the indicated tolerance factor.

S5 Circuit optimization

Table S1: Circuit depth of the ansatz used at each iteration step of the Qubit-ADAPT using
the two different CNOT orientations and the one generated by our algorithm (Optimal).
For each version we show also the depth of the transpiled circuit for IBM torino quantum
computer (ISA depth) using the cascade pattern.

Standard Reverse Optimal

# op. depth CNOT ISA depth CNOT ISA depth CNOT ISA
0 1 0 1 1 0 1 1 0 1
1 10 6 22 8 6 24 8 6 24
2 10 12 82 8 12 74 8 12 80
3 19 18 126 17 18 132 17 18 132
4 35 32 173 33 32 181 33 32 181
5 42 38 207 39 38 215 39 38 215
6 44 44 197 41 44 215 41 44 215
7 57 54 242 54 54 253 54 54 253
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Table S2: Circuit depth of the ansatz used at each iteration step of the Fermion-ADAPT
using the two different CNOT orientations and the one generated by our algorithm (Optimal).
For each version we show also the depth of the transpiled circuit for IBM torino quantum
computer (ISA depth) using the cascade pattern.

Standard Reverse Optimal
# op. depth CNOT ISA depth CNOT ISA depth CNOT ISA
0 1 0 1 1 0 1 1 0 1
73 48 110 68 48 64 67 46 64
73 96 232 68 96 149 67 92 149

696 576 1244 683 576 1059 616 514 1060
1110 896 1949 1090 896 1631 979 794 1628
1182 944 2072 1157 944 1719 1045 840 1726
1254 992 2074 1157 992 1720 1045 386 1718
1408 1040 2183 1224 1040 2293 1111 932 1790

N O Ol W N

S6 Job Size Limitations in IBM Quantum Computers

To estimate the computational limitations of IBM quantum computers, we submitted a series
of jobs using the Estimator primitive from the IBM Qiskit Runtime. These jobs varied in
both the number of two-qubit gates and the number of Pauli observables measured.

The data shown in the plot below reflects the limitations observed at the time of writ-
ing this manuscript. A job was considered not allowed if the server returned an error at

submission time, indicating that the circuit exceeded current resource or policy constraints.
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Figure S21: Maximum job size accepted by various IBM quantum computers, measured as
the product of the number of two-qubit gates and the number of measured Pauli operators
in the observable. IBM Brussels was tested 3 times
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S7 Quantum hardware experiments
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Figure S22: Energy evaluations (in Ha) with Qubit-ADAPT ansétze with 0-7 qubit operators
measured in the IBM Torino computer using 9000 shots per sample, CASCADE pattern
and error mitigation. The coefficients of the ansatz are obtained from an exact calculation.
Horizontal lines indicate the exact HF (green) and FCI with 4 active orbitals and 4 active
electrons (gray). The energy difference between HF and exact GS (correlation energy) is
53.9 mHa.
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Figure S23: Energy evaluations (in Ha) with Qubit-ADAPT ansétze with 0-7 qubit operators
measured in the IBM Torino computer using 9000 shots per sample, FAN pattern and error
mitigation. The coefficients of the ansatz are obtained from an exact calculation. Horizontal
lines indicate the exact HF (green) and FCI with 4 active orbitals and 4 active electrons
(gray). The energy difference between HF and exact GS (correlation energy) is 53.9 mHa.
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Table S3: Standard energy errors and residual biases obtained on the IBM torino quantum
machine using the CASCADE pattern, with and without error mitigation. The ISA-compiled
circuit depth at each ansatz size (number of operators) is additionally provided.

mitigated non-mitigated
# op ISA depth std. err. residual bias std. err. residual bias
0 1 0.009640 0.007750 0.004314 0.065547
1 24 0.009786 0.014616 0.008208 0.130618
2 80 0.048527 0.024430 0.011697 0.286382
3 132 0.053708 0.065366 0.016977 0.349918
4 181 0.072687 0.255181 0.022630 0.391574
5 215 0.092860 0.092992 0.018493 0.421805
6 215 0.095753 0.060726 0.020422 0.525207
7 253 0.167928 0.083850 0.018801 0.541124

In Tables S3 and S4, we report the results obtained from the quantum-hardware calculations.
These tables compare the outcomes of the mitigated and non-mitigated calculations. As
observed, the use of error mitigation reduces the residual bias, at the expense of increasing
the standard error relative to the non-mitigated results. This behaviour is expected and
appears in both circuit patterns. As discussed in the main text, the reduction in residual
bias is more pronounced for the FAN pattern, making it more effective than the CASCADE
pattern. This improvement can be attributed to the lower ISA circuit depth achieved in the

FAN topology, as shown in the tables.
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Table S4: Standard energy errors and residual biases obtained on the IBM torino quantum
machine using the FAN pattern, with and without error mitigation. The circuit depth of the
ISA-compiled circuits at each iteration (ISA depth) is also reported.

mitigated non-mitigated
# op ISA depth std. err. residual bias std. err. residual bias
0 1 0.005037 0.000086 0.004314 0.065547
1 19 0.005471 0.036794 0.004525 0.099224
2 70 0.024646 0.160981 0.014175 0.278944
3 124 0.017337 0.164561 0.010135 0.306543
4 155 0.040834 0.182286 0.009426 0.370087
5 184 0.030711 0.153979 0.013950 0.442582
6 195 0.024272 0.150725 0.014881 0.347148
7 213 0.042336 0.212549 0.008964 0.345339

S8 Error-mitigation on IBM Hardware

All hardware results on IBM-Torino using error mitigation were obtained using the Qiskit
Runtime Estimator primitive with resilience level = 2. At this level, the runtime auto-
matically enables a Zero Noise Extrapolation (ZNE) procedure combined with measurement
error mitigation.

ZNE was performed using the built-in noise-scaling method based on gate folding, with
scaling factors 1,3,5. The extrapolation to the zero-noise limit employed an exponential fit
of the measured expectation values with linear fallback when variance is large.

Pauli-based TREX (Twirled Readout Error eXtinction) is applied with a per-job cali-
bration cadence, meaning that the calibration circuits required for the readout-mitigation
model are freshly executed for each submitted job rather than reused across runs. TREX
relies on twirled measurements, implemented by randomly replacing each measurement gate
with a three-step sequence consisting of (i) application of a Pauli-X gate, (ii) measurement,
and (iii) classical bit-flip post-processing.

The twirling randomization mode is set to automatic (IBM Runtime default), which

selects random twirling operations according to the backend configuration and the active
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mitigation pipeline, as specified in the IBM Runtime twirling options documentation.

S9 Thermal relaxation noise model

In Figure S24, we present an additional view of the data from the simulations using the noise
models described in the main text. This representation highlights more clearly that, under
the noise model, ansatze with fewer operators are less affected by decoherence, while larger
ansétze systematically yield higher energies. As the coherence factor increases, the energies
obtained for all ansatz sizes converge toward their exact values.

In Figure S24 (right), we show the number of ansitze with residual biases smaller than
1 mHa. This plot reveals that, for coherence factors of approximately 100 or higher, all

ansatze fall below this threshold.
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Figure S24: Simulation of the benzene molecule using qubit-ADAPT with a thermal re-
laxation noise model in Qiskit Aer. (Left) Energy of the ansatz with different numbers of
operators as a function of the coherence factor; horizontal lines indicate the exact energies
for each ansatz size. (Right) Number of operators exhibiting residual biases larger than 1
mHa as a function of the coherence factor.

S9.1 Instruction execution times

The instruction times used in our Qubit-ADAPT simulations with the thermal relaxation

noise model are summarized in Table S5, corresponding to:

e Parameterized single-qubit rotation gates
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— Ul: phase shift gate.
— U2: single-qubit rotation with two parameters.

— U3: general single-qubit unitary rotation with three parameters.
e CX: CNQOT gate.
e Reset: reset operation initializing a qubit back to the |0) state.

e Measure: the measurement operation collapses a qubit’s state into either |0) or |1) and

records the result.

Table S5: Instruction execution times (in ns) used in the thermal relaxation noise model.

instruction time

Ul 0
U2 50
U3 100
CX 300
Reset 1000

Measure 1000
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