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Figure S1. (a) Overview of the electrochemical measurement instrument consisted of a triode cell,

a potentiostat (Vertex 1A), and an analysis PC (IviumSoft). (b) Triode glass cell (HX-111),

containing a working electrode of glassy carbon (HX-W8, center), a counter electrode with

platinum (HX-C13, left), and the reference electrode of Ag/AgCl (HX-R14, right).



Figure S2. CV current-voltage diagrams for basic DTZ and acidic analgesics, NPX, ASP, LOX, KTP,

IBP, and DCF. No redox signals were observed for the drug samples in the applied voltage range.
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Figure S3. Molar electrical conductivity for inorganic electrolytes and acetic acid (AcOH). Ion 

transportation numbers for Na+, K+, Cl-, and OH- were calculated using Hittorf’s equation.  
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Figure S4. Molar electrical conductivity for basic DTZ and acidic analgesics and their calibrations. 
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Figure S5. Correlations of the hydrodynamic volumes derived from DDOSY to Mw of NSAIDs (a) and 

molecular volume of NSAIDs (b). Supposing that the Mw of ASP, IBP, NPX, and INM correlated to the 

hydrodynamic volumes, those of KTP, DCF, and LXP were lower than expected from their Mw. The 

CPK volumes were calculated using https://www.molinspiration.com/services/volume.html; the 

hydrodynamic volumes of KTP and DCF were smaller than predicted based on their CPK volumes. 



Figure S5. Normalized diffusion constants (nD) for APIs, obtained from EIS (c) and DOSY (d) 

measurements, correlated to their molecular weights (Mw). nDEIS values were correlated to Mw with 

the determination constant r2 = 0.5914, whereas nDDOSY had r2 = 0.7617. After excluding NPX and DCF 

as outliers, the nDEIS for n = 5 improved to have an r² of 0.8815 (Figure 3b). With NPX and IBP as 

outliers, the nDDOSY for n = 5 improved to have an r2 of 0.9483 (Figure 3c). 
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Figure S6. 1H-NMR 1D-spectra of DTZ and LXP and their signal assignments in D2O. (see ref[13])
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(c) in DMSO-d6 (d) in D2O
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Figure S6 (continued). DOSY spectra of DTZ measured in (c) DMSO-d6, (d) D2O.
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Figure S7. DOSY spectra of ASP/DTZ equimolar mixture measured in (a) DMSO-d6, (b) D2O.



Figure S7 (continued). DOSY spectra of ASP measured in (c) DMSO-d6, (d) D2O. [13]
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Figure S8. DOSY spectra of DCF/DTZ equimolar mixture measured in (a) DMSO-d6, (b) D2O.



Figure S8 (continued). DOSY spectra of DCF measured in (c) DMSO-d6, (d) D2O. [15]

(c) in DMSO-d6 (d) in D2O
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Figure S9. DOSY spectra of IBP/DTZ equimolar mixture measured in (a) DMSO-d6, (b) D2O.



Figure S9 (continued). DOSY spectra of IBP measured in (c) DMSO-d6, (d) D2O. [13]

(c) in DMSO-d6 (d) in D2O
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Figure S10. DOSY spectra of KTP/DTZ equimolar mixture measured in (a) DMSO-d6, (b) D2O.



Figure S10 (continued). DOSY spectra of KTP measured in (c) DMSO-d6, (d) D2O. [13]

(c) in DMSO-d6 (d) in D2O
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Figure S11. DOSY spectra of NPX/DTZ equimolar mixture measured in (a) DMSO-d6, (b) D2O.



Figure S11 (continued). DOSY spectra of NPX measured in (c) DMSO-d6, (d) D2O.

(c) in DMSO-d6 (d) in D2O
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