Electronic Supplementary Information

Molecular Origin of High-Concentration Cellulose Dissolution in Organic Acid Media: A Combined Experimental and Computational Study

Kanta Hayashi,^a Tomoya Tashiro,^a Tomohiro Hashizume,^b Takashi Watanabe,^{c,d} and Kenta Fujii ^{a*}

^a Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan. ^b Daicel Corporation, Ofuka-Cho, Kita-Ku, Osaka 530-0011, Japan. ^c Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan. ^d Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto 611-0011, Japan.

^{*} To whom correspondence should be addressed. E-mail: k-fujii@yamaguchi-u.ac.jp

Experimental and Computational Methods.

High-energy X-ray total scattering (HEXTS). HEXTS measurements were conducted at ambient temperature using a high-energy X-ray diffraction apparatus installed at SPring-8 (BL04B2 beamline, JASRI, Japan). Monochromatized 61.19 keV X-rays were obtained using a Si(220) monochromator. The observed X-ray scattering intensities were corrected for absorption, polarization, and incoherent scattering to determine coherent scattering intensities, $I_{\text{coh}}(q)$. The experimental X-ray structure factor per stoichiometric volume, $S^{\text{exp}}(q)$, was obtained using the following equation:

$$S^{\exp}(q) = \frac{I_{\cosh}(q)}{N} - \sum n_i f_i(q)^2 + 1$$
 (S1),

where n_i and $f_i(q)$ correspond to the number and atomic scattering factor of atom i, respectively, and N is the total number of atoms in the stoichiometric volume. The radial distribution function, $G^{\exp}(r)$ is obtained using the Fourier transform of the $S^{\exp}(q)$ as follows:

$$G^{\exp}(r) - 1 = \frac{1}{2\pi^2 r \rho_0} \int_0^{q_{\max}} q \{ S^{\exp}(q) - 1 \} \sin(qr) W(q) dq$$
 (S2),

where ρ_0 is the number density of atoms, q_{max} is the maximum value of q (25 Å⁻¹ in this study), and W(q) corresponds to the Lorch window function.⁴

Table S1. Concentrations (weight percent and molarity), density (d) and refractive index (n_2) of CB/FA, CL/FA, CB/PA, and CL/PA solutions. c_{CB} and c_{CB} denote the molarity of CB and the CB dimer–equivalent molarity of CL.

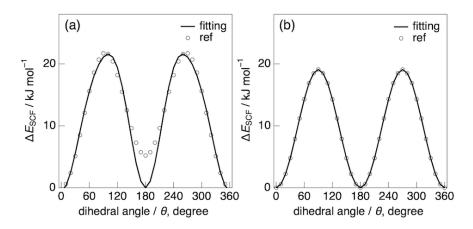
CB/FA solutions			
w _{CB} / wt%	c_{CB} / mol dm $^{-3}$	d / g cm ⁻³	n_2
0	0	1.211	1.368
20	0.614	1.261	1.397
30	0.872	1.293	1.406
40	1.090	1.306	1.417
50	1.284	1.318	1.422

CL/FA solutions

w _{CL} / wt%	$c_{\rm CB}'$ / mol dm ⁻³	d/g cm ⁻³	n_2
5	0.179	1.219	1.378
10	0.346	1.235	1.384
15	0.500	1.243	1.391
20	0.644	1.252	1.396
25	0.780	1.264	1.401

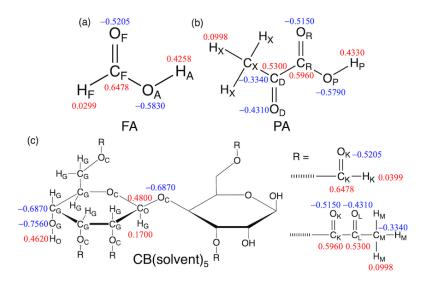
CB/PA solutions				
$w_{\rm CB}$ / wt%	c_{CB} / mol dm ⁻³	d / g cm ⁻³	n_2	
0	0	1.271	1.399	
5	0.178	1.276	1.426	
10	0.343	1.295	1.438	
15	0.496	1.299	1.432	
20	0.641	1.314	1.431	
25	0.773	1.320	1.422	
CL/PA solutions				
w _{CL} / wt%	c_{CB}' / mol dm $^{-3}$	d / g cm $^{-3}$	n_2	
2	0.075	1.240	1.423	

$w_{\rm CL}$ / wt%	c_{CB}' / $\mathrm{mol}~\mathrm{dm}^{-3}$	d / g cm ⁻³	n_2
2	0.075	1.240	1.423
4	0.147	1.245	1.431
6	0.219	1.253	1.433
8	0.289	1.269	1.435
10	0.362	1.287	1.437


Table S2. Compositions (number of CB, FA, and PA) of the systems for MD simulations, and density (*d*) in 20 wt% CB/FA and 20 wt% CB/PA solutions.

Sample	CB(solvent) ₅	FA	PA	d / g cm ⁻³	
			rA	MD^{a}	Exp^b
20 wt% CB/FA	139	4471	-	1.3583	1.261
20 wt% CB/PA	139	-	2007	1.3397	1.314

^a Values obtained from the present MD simulations. ^b Experimental values.


Table S3. Coordination numbers N(r) of O_H atoms of solvent molecules around O_X atoms of the CB(solvent)₅ molecules, obtained from MD simulations for 20 wt% CB/FA and CB/PA systems. The N(r) was calculated by the integration of the corresponding $g_{\text{OX-OH}}(r)$ up to r = 3.0 Å, shown in Figure 11.

O (solute)-O (solvent)	CB/FA system	CB/PA system
O_1 – O_H	0.99	0.83
O_2 – O_H	0.51	0.30
O_3 - O_H	0.86	0.49
${ m O_4-O_H}$	-	0.27
Total	2.36	1.89

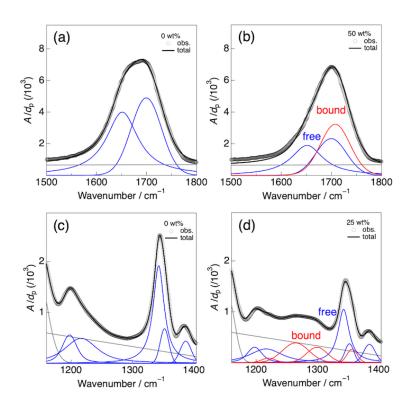
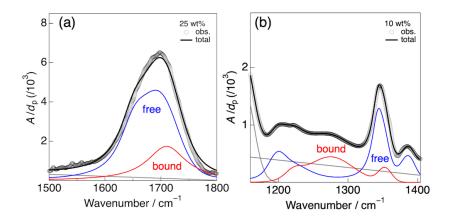
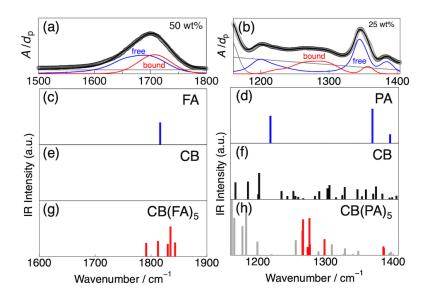
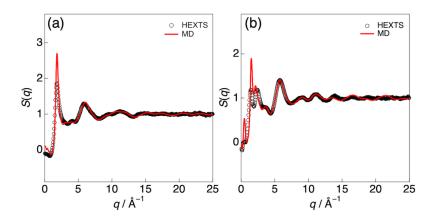
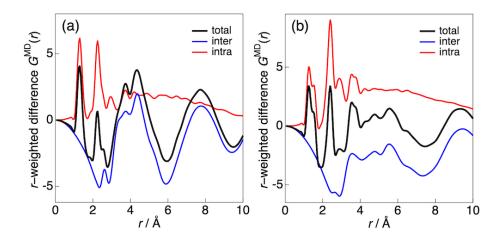


Figure S1. Torsion potential energy surface as a function of the (a) H–C–O–H and (b) O=C–O–H dihedral angle of FA molecule from ref 5 (open circles). The solid line shows the fitting result for the data using the following equation to determine the parameters V_n (n = 1, 2, 3, and 4). The resulting V_n values are: $V_1 = -0.5468$ kJ mol⁻¹, $V_2 = 5.2941$ kJ mol⁻¹, $V_3 = 0.6960$ kJ mol⁻¹, and $V_4 = 0.5412$ kJ mol⁻¹ for H–C–O–H; $V_1 = 0$ kJ mol⁻¹ , $V_2 = 4.565$ kJ mol⁻¹, $V_3 = 0$ kJ mol⁻¹, and $V_4 = 0$ kJ mol⁻¹ for O=C–O–H.


$$E(\phi) = \frac{V_1}{2} \left[1 + \cos(\phi + f1) \right] + \frac{V_2}{2} \left[1 - \cos(2\phi + f2) \right] + \frac{V_3}{2} \left[1 + \cos(3\phi + f3) \right] + \frac{V_4}{2} \left[1 - \cos(4\phi + f4) \right]$$
 (S3).


Figure S2. The partial charges of (a) FA, (b)PA and (c) CB(solvent)₅ were calculated based on the ChelpG method [MP2/cc-pVTZ(-f)//HF/6-31G(d)]. R is a substituent derived from an OH group, which is modified in the reactive solvent (FA or PA). In a formic acid system, the OH group is formylated, and the resulting R corresponds to a formyl group. In a pyruvic acid system, it is esterified, and R corresponds to an ester group.


Figure S3. Full peak deconvolution into individual peaks for (a) neat FA and (b) 50 wt% CB/FA solution, (c) neat PA, and (d) 25 wt% CB/PA solution.


Figure S4. Typical peak deconvolution results for (a) 25 wt% CL/FA and (b) 10 wt% CL/PA solutions.

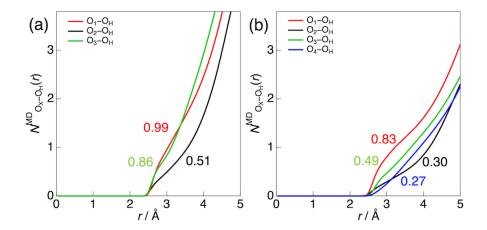

Figure S5. Typical peak deconvolution results for (a) 50 wt% CB/FA and (b) 25 wt% CB/PA solutions, and the theoretical IR bands for (c) FA, (d) PA, (e, f) CB, (g) CB(FA)₅, and (h) CB(PA)₅ molecules.

Figure S6. The X-ray structure factor S(q) obtained from HEXTS experiments (open circles) and MD simulations (solid line) obtained for (a) 20 wt% CB/FA and (b) 20 wt% CB/PA solutions.

Figure S7. r^2 -weighted partial $G^{\text{MD}}(r)$ s for intramolecular [red; $G^{\text{MD}}_{\text{intra}}(r)$] and intermolecular [blue; $G^{\text{MD}}_{\text{inter}}(r)$] contributions, associated with the total profile [black; i.e., $G^{\text{MD}}_{\text{total}}(r) = G^{\text{MD}}_{\text{intra}}(r) + G^{\text{MD}}_{\text{inter}}(r)$], for (a) 20 wt% CB/FA and (b) 20 wt% CB/PA solutions.

Figure S8. Coordination numbers N(r) obtained by integrating the radial distribution functions $g_{\text{OX-OH}}(r)$ for CB(solvent)₅ in (a) formic acid (FA) and (b) pyruvic acid (PA) systems. The curves represent the cumulative numbers of solvent O_H atoms around each oxygen site (O₁–O₄) in the chemically modified CB unit as a function of distance r. The coordination numbers at r = 3.0 Å, corresponding to the number of hydrogen bonds per oxygen site, are indicated in the figure and summarized in Table S3.

References

1. S. Sakai, *KEK Report 90-16*, National Laboratory for High Energy Physics, Tsukuba, Japan, 1990.

- 2. D. T. Cromer, J. Chem. Phys., 1969, **50**, 4857-4859.
- 3. J. H. Hubbell, Wm. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer and R. J. Howerton, *J. Phys. Chem. Ref. Data*, 1975, 4, 471-538.
- 4. K. Hirosawa, K. Fujii, K. Hashimoto and M. Shibayama, *Macromolecules*, 2017, **50**, 6509-6517.
- 5. N. Dawass, J. Langeveld, M. Ramdin, E. Perez-Gallent, A. A. Villanueva, E. J. M. Giling, J. Langerak, L. J. P. van den Broeke, T. J. H. Vlugt and O. A. Moultos, *J. Phys. Chem. B*, 2022, **126**, 3572-3584.