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Exercises

1. Spinful, valley-resolved low–energy graphene Hamiltonian (Section III).
Work with the spinful, valley-resolved low–energy graphene Hamiltonian as shown
in Section III. Briefly justify each entry (e.g. action of T = isyK and inversion
exchanging A/B).

(a) Gap analysis at K/K ′. Show analytically that:

• With Rashba only (λR ̸= 0, M = λSO = Jex = 0), the Dirac points at
K/K ′ remain gapless. In fact, at k = 0 one finds the spectrum

{0, 0, ±2λR},

so two bands remain pinned at zero energy.

• A Semenoff mass M opens a trivial gap Eg = 2|M | at each valley.

• Intrinsic SOC λSO opens a Kane–Mele (QSHE) gap Eg = 2|λSO| at each
valley (with opposite spin masses).

(b) QAH from exchange + Rashba (mechanism sketch). For Jex ̸= 0 and
λR ̸= 0 (with M = λSO = 0), explain qualitatively (or by exhibiting a lattice
regularization) how a Chern gap can emerge even though each term alone is
gapless: spin splitting (Jex) plus spin–momentum locking (λR) generates a
momentum–dependent mass whose sign pattern yields a nonzero Chern number
once a global gap opens.

(c) Numerical illustration (figures with inset). Compute and plot the pair
of surfaces ±E(kx, ky) near a valley for three parameter sets:

i. Gapless Rashba: (λR > 0, M = λSO = Jex = 0);

ii. Trivial Semenoff gap: (M > 0, λR = λSO = Jex = 0);

iii. Intrinsic SOC gap: (λSO > 0, λR =M = Jex = 0).

Scale energies to eV and add a 0–1 eV inset to each panel (zoom of the con-
duction branches). Deliverable: three figures (both conduction and valence
surfaces together), consistent color scales and viewing angles, each with a 0–
1 eV inset.
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(d) Edge physics expectation.

M -gap ⇒ no net Hall effect (valley Hall only),

λSO-gap ⇒ helical edges (QSHE),

Jex + λR ⇒ chiral edge(s) (QAH).

Hint. At k = 0 with Rashba only, the eigenvalues are {0, 0,±2λR}; two bands
remain at zero, hence no full gap, whereas M or λSO produce masses ±M or
±λSO at each valley, giving gaps 2|M | and 2|λSO|, respectively. Readers may
consult useful references [1, 2, 3, 4, 5].

2. Continuum nodal-loop model (units ℏ = 1). Consider a continuum two–band
Hamiltonian

H(k) = vxkxσx +m(ky, kz) σz, m(ky, kz) = b−
√
v2yk

2
y + v2zk

2
z , (1)

with vx,y,z, b > 0 and Pauli matrices σx,z acting in an orbital (sublattice) space. The
conduction/valence energies are

E± = ±
√
v2xk

2
x +m2.

The nodal loop lies in the (ky, kz) plane at kx = 0 and solves m(ky, kz) = 0, i.e.

v2yk
2
y + v2zk

2
z = b2, (2)

an ellipse with semi–axes a = b/vy and c = b/vz. Note that on the plane kx = 0
the Hamiltonian anticommutes with Γ = σy, i.e. {H(0, ky, kz),Γ} = 0 (a chiral
symmetry).

(a) Berry (Zak) phase as a diagnostic of the drumhead region. For each
fixed (ky, kz), view H as a 1D insulator in kx with “mass” m(ky, kz). Define
the Zak phase of the occupied band along kx:

ϕZak(ky, kz) :=

∫ +∞

−∞
Ax(k) dkx, (3)

and show

ϕZak(ky, kz) =

{
π, v2yk

2
y + v2zk

2
z < b2,

0, otherwise.
(4)

Hint. In 1D chiral Dirac, the Zak phase is π when m < 0 and 0 when m > 0
(mod 2π).

(b) Berry phase on linking loops in (ky, kz). Restrict to kx = 0 and take a
small closed path C in the (ky, kz) plane. Show that the occupied–band Berry
phase is

γ(C) =

∮
C

A∥ · dk∥ =

{
π, C links the nodal ellipse once,

0, it does not link.
(5)

Deliverable. Put H(0, ky, kz) in an off–diagonal chiral form by a unitary
rotation (e.g. σz → σx), write

H =

(
0 q
q∗ 0

)
, q ∝ m(ky, kz),

and show γ = 1
2
∆arg q along C. Hint. A loop that winds once around a

simple zero of q picks up ∆arg q = 2π.
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(c) Integer winding along kx (1D invariant parameterized by (ky, kz)).
Show that with chiral symmetry ΓσxΓ

−1 = −σx and ΓσzΓ
−1 = −σz, the 1D

Hamiltonian at fixed (ky, kz) has a winding number

ν(ky, kz) =
1

2πi

∫
dkx ∂kx ln

(
dx(kx)− im

)
, dx = vxkx, (6)

and evaluate

ν =
1

2

(
sgn(m(−∞))− sgn(m(+∞))

)
=

1

2
(1− 1) = 0

unless you compactify kx to a lattice Brillouin zone; then

ν(ky, kz) =

{
1, v2yk

2
y + v2zk

2
z < b2,

0, otherwise.
(7)

Hint. On a lattice, dx(kx) winds once around the origin as kx goes through
the BZ; the sign of m decides if the loop encloses the origin.

(d) Drumhead surface states via a mass domain wall. Consider a slab open
in x and translationally invariant in y, z. Treat ky, kz as parameters and replace
kx → −i∂x. Show that when m(ky, kz) changes sign across the surface (interior
vs vacuum), there exists a normalizable zero mode localized at the surface iff
v2yk

2
y + v2zk

2
z < b2. Conclude that surface “drumhead” states fill the interior of

the ellipse’s projection. Hint. Solve (−ivx∂xσx + m(x)σz)ψ = 0 with m(x)
kink; try ψ(x) ∝ exp

[
−
∫ x

m(x′)/vx dx
′].

(e) Low–energy DOS (one–line scaling and prefactor). Using tubular coor-
dinates along the ellipse, argue that

ρ(E) =
Lellipse

2π2vxvn
E +O(E3), (8)

where Lellipse is the ellipse circumference and vn is the loop–average of the
normal velocity vn =

∥∥∇(ky ,kz)m
∥∥ on the nodal set. Check the circular limit

vy = vz ≡ v⊥ gives

ρ(E) =
b

πvxv2⊥
E.

Hint. Integrate the 2D Dirac DOS density E/(2πvxvn) along the nodal line.
Readers may consult [6, 7, 8, 9].
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