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Fig. S1. A 'H NMR spectrum of compound 1 in CDCl3
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Fig. S2. A >*C NMR spectrum of compound 1 in CDCl3
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Fig. S3. An HR-MALDI-TOF mass spectrum and an isotopic pattern of a molecular ion peak of

CoPc-2a

Fig. S4. An HR-MALDI-TOF mass spectrum and an isotopic pattern of a molecular ion peak of

CoPc-1a
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Fig. S6. Calibration curve for absorption at 702 nm of CoPc-1a. in DMF
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Fig. S7. Calibration curve for absorption at 633 nm of CoPc-1a in DMF

Fig. S8. SEM image of (a) p(CoPc-1a)/CP, and EDS mapping of (b) carbon and (c) cobalt
atoms.
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Fig. S11. (a) chronoamperometric responses with % FEco and (b) accumulated amount of CO
recorded over 45 h at —1.20 V vs. NHE for the p(CoPc-1a)-catalyzed CO2RR in the H-cell.
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Fig. S12. Nyquist plots of faradaic impedance for the p(CoPc-1a) films obtained from the
electropolymerization of CoPc-1a on the CP for 10 cycles (black squares), 20 cycles (red circles)
and 30 cycles (blue triangles). The measurements were performed at —0.95 V vs. NHE in a CO»-
saturated 0.5 M KHCOj3 aqueous solution in the frequency range of 0.1 Hz to 100000 Hz.

Current density / mA.cm?

Fig. S13. Cyclic voltammograms of p(CoPc-1a)/MPL-CFP under N»- (black solid line) and CO»-
saturated (red solid line) conditions, compared with those of a bare MPL-CFP under the N»- (grey
solid line) and CO»-saturated (grey dashed line) conditions recorded in a 1.0 M KHCO3 solution
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Fig. S14. (a) SEM image and EDS mapping of (b) carbon and (¢) oxygen and (d) cobalt atoms of
p(CoPc-1a)/MPL-CFP before electrolysis, and (¢) SEM image and EDS mapping of (f) carbon
and (g) oxygen and (h) cobalt atoms of p(CoPc-1a)/MPL-CFP after electrolysis.

Modelling of CoPc-1a and p(CoPc-1a.)

The optimized structures of CoPec-1a and p(CoPc-1a) are shown in Fig. S13a-b. Here, the
polymer form has lattice size of 22.30 A in both x- and y-direction. To model the adsorption on
the graphene substrate, the orthorhombic graphene cell in (16,9,1) and (9,5,1) size of supercell
were prepared for the substrate for CoPe-1a and p(CoPc-1a) (Fig. S13¢-d). The lattice mismatch
in polymer model was —4.5% and —0.7% in x and y direction of p(CoPc-1a.), respectively.
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Fig. S15. The optimized structure of CoPc-1 (a) and p(CoPc-1a) (b). The simulation box for
CoPc-1 (c) and p(CoPc-1a) (d) stacked on the graphene substrate.

Modelling of deposition of CoPc-1a. on the substrate

The first layer deposition of the monolayer of CoPc-1a on the graphene substrate was
investigated. As shown in Fig. S16, the stacking configurations where the Co center is located on
atop (T), bridge (B) and hollow (H) site of sp?>-C of graphene were investigated. The orientation
angle () of each stacking pattern was compared at 8 = 0°, 15°,30°, 45°, 60° and 75°. The most
stable configuration was found to be the hollow site at & = 75° (denoted as H75) with adsorption

energy of 0.39 eV. Therefore, the subsequent investigation will be conducted using this stacking
order.
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Fig. S16. (a) Stacking configuration of CoPc-1a on the graphene substrate where a Co center
aligned on atop, bridge and hollow sites of sp>-C of graphene. The orientation 8 of each stacking
pattern was probed by rotating each configuration by 0°, 15°,30°, 45° 60° and 75° (b)
Adsorption energy of each stacking pattern for first layer deposition.

To discuss charge transfer between neighboring CoPc-1a layers, we deposited the second layer
on the first layer (H75). The stacking order of the second layer was considered as shown in Fig.
S17. The charge density change due to the stacking will be calculated for all possibilities to
provide the possible range of electron accumulation and electron depletion.
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Fig. S17. Stacking configuration of CoPc-1a at the second layer (blue) on the graphene substrate
where the first layer (black) aligned on atop site with orientation angle of 75°. The deposition of
second layer was considered in 4 different possibilities.

Modelling of deposition of p(CoPc-1a) on the substrate

The first layer deposition of p(CoPc-1a) on the graphene substrate was investigated. As seen in
the monomer case, the stacking configurations where the Co center is located on atop (T), bridge
(B) and hollow (H) site of sp>-C of graphene were investigated (Fig. S18). Due to the limitation
of periodic constraint of the model, the orientation dependence was ignored. Overall, the binding
energy between p(CoPc-1a) and graphene was confirmed to be positive, showing p(CoPc-1a)
weakly bound on the substrate.
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Fig. S18. Stacking configuration of p(CoPc-1a) on the graphene substrate where the Co center
aligned on atop, bridge and hollow site of sp?-C of graphene. Due to the limitation of periodic
constraint in the model, the orientation dependence was ignored.

To discuss charge transfer between neighboring p(CoPc-1a) layers, we deposited the second
layer on the first one. The stacking order of the second layer was considered in 3 possibilities as
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shown in Fig. S19. Although the most energetically favorable configuration was found to be
pattern 3 with positive adsorption energy of 0.21 eV, the charge density change due to the
stacking will be calculated for all possibilities to provide the possible range of electron
accumulation and electron depletion.
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E,q4s Of the second layer E,q4s Of the second layer E,qs Of the second layer
+0.89 eV +0.32 eV +0.21 eV
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Fig. S19. Stacking configuration of p(CoPc-1a) at the second layer (blue) on the graphene
substrate where the first layer (black) aligned on bridge site. The deposition of the second layer
was considered in 3 different possibilities.
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Fig. S20. (a) HOMO, (b) LUMO orbitals of CO adsorbed on the CoPc-1a molecule and (c)
HOMO, (d) LUMO of CO; adsorbed on the CoPc-1p molecule.
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Table S1. Assignment of ATR-FTIR spectra of CoPc-2a, CoPc-1a and p(CoPc-1a)/Au-glass

Wavenumber / cm™! Assignment Reference
CoPc-20. | CoPc-1a | p(CoPc-1a)
738 740 dc-H (out-of-plane) [43]
752 out-of-plane vibrations of C-H groups in [51]
phenazines
812 skeletal deformations of phenazine ring system [51]
835 836 854 C-Haro0-ar rocking [44]
976 976 983 Benzene totally symmetric vibration [43]
983 C-H in-plane deformation bands [51]
1084 1090 C-O-C stretching and dc-n (in-plane) [43,45,46]
1090 C-H in-plane deformation bands [51]
1107 1127 1135 Isoindole totally symmetric vibration [43]
1135 C-H in-plane deformation bands [51]
1204 C-H in-plane deformation bands [51]
1236 1237 1251 Caromatic-O-C stretching [45,47]
1326 1325 1331 C-C stretching in isoindole and v (pyrrole) [43,48]
1408 1410 C-C stretching in isoindole, and vibrations of [43,48]
pyrrole fragment and nitrogen mesoatoms
1491 1500 1507 v (-N=) [43]
1586 1589 1589 v (C=C) [43]
2943 v (C-H) [43]
3210 N-H stretching of primary amino group [49]
3324 N-H stretching of primary amino group [49]
3376 N-H stretching of secondary amino group [50]
Table S2. Assignment of Raman spectra of CoPc-1a/CP and p(CoPc-1a)/CP.
Raman shift/ cm™! Assignment Reference
CoPc-1a | p(CoPc-10)
754 754 Co-N stretching coupled with pyrrole expanding [52]
1083 1083 C-H in-plane bending [53]
1278 1278 C-H in-plane bending [53]
1340 1340 Co-N stretching coiup%ed with C-H 'in—plane bending, and 52]
isoindole stretching
1349 1349 Cp-Cp, Co-Cp-Cp, C,-Cs, and Cp-C, stretching vibration of the [54]
pyrrole group
1426 1426 C-Nm-C stretching, pyrrole e)'(pending and C-H in-plane [55]
bending
1462 1462 C-H in-plane bending and Cp-Cg stretching [55]
C-Nu-C bridges stretching and pyrrole expanding coupled
1539 1539 with C-H vibrations [52]
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Table S3. Co'' content on substrates determined by ICP-OES

Substrate types Co" content on substrates (umol-cm2)
Carbon paper 0.052
MPL-CFP 0.061

Calculations of FE g oy, » TON and TOF
ZXnXF
FEco or y, = ———— % 100%

ltotal
mole of products

Turnover number (TON) =
mole of catalysts

T (TOF) = TON
urnover frequency = time )

number of electrons required to obtain product
number of moles of the product
gas constant, 8.314 J K1 mol!
temperature, 298.15 K
Faraday's constant, 96485 C mol™!
pressure, 101325 Pa

W 9o S N
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Table S4. Comparison of catalytic performance of p(CoPc-1a)/CFP with selected reported
CoPc-based catalysts for ECO2R in the aqueous media.

Potential / J/ FEco/ | TOFco/ Stability /
Catalyst Electrolyte | Cell type V vs. NHE® | mA-cm-2 % 1 h Ref.
0.5 MKHCOs3 | H-cell -1.15 3.8 97 0.37 45 .
This
p(CoPc-1a) work
1.0 M KHCOs; | Flow cell -1.54 151 98 13 42
p(CoPc-1B) | 0.5 M KHCOs | H-cell -1.19 5.9 94 1.1 120 [25]
p-CoTAPc 1 M KHCO; | Flow cell —-1.60" 153 +10 | 9349 ~140 41 [24]
p(CoPc-1) | 0.5 M KHCO; | H-cell -1.09 ~2 94 0.29 24 [23]
CoPe-PL 0.5 M KHCO;3 H-cell -1.13 9.4 93 2.2 40
COF-1 1.0 MKOH | Flow cell -0.93¢ 44 95 n.a.t n.a.l [60]
CoPc-PI- B b
COF-2 0.5 M KHCOs | H-cell -1.13 6.2 95 1.9 n.a.
CoPc-PI- B
COF-3 0.5 M KHCO3 | H-cell -1.23 ~31.7 96 0.6 20 [61]

¢ Values were estimated from the reported data in the RHE scale by using equation Erur = Enue

+0.059pH

b Data was not available.
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