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Figure S1. Distribution of functional groups in collected dataset from NIST and SDBS

databases.
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Figure S2. Distribution of functional groups in train set.
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Figure S3. Distribution of functional groups in test set.
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Figure S4. Distribution of functional groups in imbalanced test set.
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Figure S5. Distribution of purity classes in train set.
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Figure S6. Distribution of purity classes in test set.
Purity class distribution: y_test_imbalanced
630 | Total samples: 1419
600 - - - -
500
400 A 375
300
100 4
0
¢
&
& L
¥ &
TR

Purity class

Figure S7. Distribution of purity classes in imbalanced test set.
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S2 Data preprocessing and augmentation

The spectral data and molecular information infrared spectrum-compound pairs were
collected from the National Institute of Standards and Technology (NIST) database and the
Spectra Database of Organic Compounds (SDBS) database of the National Institute of Advanced
Industrial Science and Technology (AIST). The spectrum in png or jcamp format and the
corresponding InChl string in text format were extracted using the unique compound identifier.

The spectral data were obtained using CCl, as a solvent. The collected set contained 2440
spectra. Each spectrum corresponded to a molecule encoded as a one-hot vector of 16 organic
functional groups and a purity class.

Data preprocessing was introduced according to the methodology described by Cole and
co-autors." Under data preprocessing step, all the spectra were converted to absorption spectra
in order to obtain a IR spectrum of mixtures using Beer mixing law. For the same reason, all the
spectra were baseline-corrected and normalized: spectra from different databases may
significantly vary. The data preparation provided prediction the presence of contaminants in
concentrations more than 5%. Each IR spectrum consisted of a series of 600 points over a range
of 400 cm" to 4000 cm" with a resolution of ~6 cm-".

A classification of mixtures into 16 classes, including pure substances, was carried out,
based on possible impurities. Additionally, we focused on the number of substance-impurity pairs
in the collected database: cases with at least 7 examples per group were selected. The algorithm
for searching for a substance-impurity pairs was implemented using Reaction SMARTS
templates: the function accepted all the examples that corresponded to the condition of the
presence of a characteristic label in the main substance (e.g., all the alcohols) as input, and the
corresponding contaminant was determined based on the specified transformations. If the search
of the library resulted in a complete match of the InChl string of the impurity and the substance in
the database, the pair was added to the database. The corresponding vector of functional group
presence for mixtures was the element-wise OR of the functional group vectors of the initial
compounds.

Before the spectra were generated, the data in the form of substance-impurity pairs were
divided in a ratio of ~ 72:13:15 for training, validation and test sets. The indexes of the pairs main
compound/impurity were divided as follows: augmented data were not presented in the validation
and test sets for a fairer evaluation of the model. It was an indicator, the model was not overtrained
on the features of the training set, but rather generalized on data on characteristic vibrational
frequencies.

According to Beer's law, spectra of a substance with a corresponding impurity were

synthetically generated. For a binary mixture, it can be written as follows:
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where m is number of samples (m is individual for each class), | is wavenumber points (600 in

this work); Ki()_ intensities of a pure compound. The coefficients for each linear combination

were assigned using uniform distribution.

The concentration of a main substance (¥m1) is in the range of 75-95% due to Beer's law
limitations. The simple and efficient approach resulted in good correlation of generated and real
spectra. Quantitative analysis or strict modeling of mixture spectra was not the aim of the study.
Qualitative addition of an impurity was enough to observe it in IR-spectrum. Recording IR-spectra
in CCl, met the requirements of handling with dilute solutions, that was appropriate for Beer's
approximation. In a case of very dilute solutions, a medium insignificantly impact on the shift in
vibration frequencies due to the environment of a molecule is constant and there is no impact of
the anisotropic polarizability of a solvent.

Horizontal shifting and noise incorporation were applied on training data to make a sample
balanced for the purity prediction task. It was carried out due to limitation of examples for some
classes of purity ("Nitrile is contaminated with carboxylic acid" — 7 examples, "Aldehyde is
contaminated with carboxylic acid" — 11 examples, "Aldehyde is contaminated with alcohol" — 14
examples). Noise level, number of linear combinations for a single pair, and the composition of
horizontally shifted spectra were selected individually in order to obtain =2500 examples per class.
The set of augmentations provided prediction of the class even with a very limited set of examples.

Artificial noise was incorporated according to the methodology described in Modestino and
co-autors work?: each class was assigned individual noise coefficient ranging from 0 (no noise)
to 1 (maximum noise level). The coefficient was multiplied by the maximum intensity deviation
value of £ 0.02 a.u., and the resulting noise value was added to the signal intensity.

The test set is highly imbalanced due to the test data set was not augmented (Section S1
Fig. S7). According to fundamental principle of ML model evaluation, the distribution in test set
and in data for production must be the same. Considering the true distribution of reagent
contamination cases is unknown and the existing class distribution was not representative in this
work, it was decided to balance the dataset. Balancing the test set corrected the impact of
arbitrary class frequencies incorporated after data collection and increased the impact of false
predictions for classes with limited examples (the prediction results for the imbalanced test set

were given in Section S8).
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S3 Model architecture

The 1D-CNN encoder processes the 600-dimensional one-chanel input through successive
convolutional and fully-connected layers. Three 1D convolutional blocks (with channel depths 10,
20, 40) are applied sequentially. Each block consists of a 1D convolution, batch normalization,
RelLU activation, and 1D max-pooling. These layers extract local patterns from a signal at
progressively higher levels of abstraction. Output of final convolutional block is flattened and
passed through three dense layers with sizes of 1015, 733, and 529. Dropout is applied between
these layers to regularize the model, where p = 0.388079443185074. Each of the first two fully-
connected layers uses RelLU activation. This 1D-CNN encoder serves as one expert in the MMoE
framework, where 529-dimensional representation from final layer is used as the expert output.

The core MMoE module contains four shared experts, each of which learns different feature
extractors for the input. These networks are not weights-shared but share the overall architecture,
so that each can specialize in different aspects of the data. For each task, the model includes a
gating network implemented as a linear layer, with a softmax activation. The gating network uses
the same 529-dimensional input and computes a 4-dimensional output of weights (sum of weights
is 1) — one weight per expert. These gate values are multiplied with the corresponding expert
outputs and summed to produce a single 529-dimensional fused representation for that task.

Thus, for task t, the model computes
4

g® = softmax(W®x + p®); A = Zg(?ei,
i=1

where x is the input and e, are the expert outputs. The gating networks thus dynamically re-
weight the shared expert outputs per task. This multi-gate structure explicitly learns to model task
relationships from data by allowing each task to attend to different experts.

Each task has its own decoder that project the 529-dimensional fused representation ht to
a 16-dimensional output. Then, the first task (prediction of set of functional groups, multi-label
classification) produces 16 independent scores passed through a sigmoid activation. Each output
dimension represents a separate binary label. The task is trained with a multi-label binary cross-
entropy (BCE) loss (summing the per-dimension BCE losses). The second task (prediction of
purity class, multiclass classification) produces 16 class logits. These 16 outputs are interpreted
as a 16-way multiclass task and trained with a margin-based multiclass loss (PyTorch’s
implementation of MultiMarginLoss). A margin-based loss is independent of the exact probability
scores, in contrast with cross entropy loss; instead, it focuses on ensuring that the score of the
correct class is higher than the scores of incorrect classes by a specified margin. For the main
task, using MultiMarginLoss as loss function results in to a smoother convergence and a more
stable training process because the loss function does not overreact to every minor prediction

error.
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While training, the losses from the two tasks were combined via summing, effectively
weighting the tasks equally in the objective. In our implementation, each task’s loss contributes
50% to the total loss.

Although we do not explicitly encode cross-task constraints, the shared experts and gating
allow the model to capture implicit task relationships. For example, if the data has patterns such
as “whenever class “Amine is contaminated with halide” is predicted, label indices “amine” and
“halide” are active”, the network can learn this correlation through the shared expert features and
task gates. In summary, the model uses joint representation learning (shared experts) combined
with task-specific gates and decoders to perform both tasks simultaneously, based on the data to

inform any structured dependencies.

Table S1. Parameters of learning

Name Value
Weighting Equal weighting
Optimizer Adam

Learning rate 0.0001
Batch size 60
Scheduler ReduceOnPlateau

Scheduler mode Max
Scheduler factor 0.9
Scheduler patience 5
Scheduler cooldown 2
Scheduler threshold 0.001
Epoch for training 60
Best model epoch 53
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S4 External test set preparation

Cyclohexanone (99.8%), propionic acid (99%), propiony! chloride (98%), 1-bromohexane
(>99%) were purchased from Acros Organic. Di-n-butyl ether (99%) was purchased from abcr.
Cyclohexanol, hexan-1-ol, valeric acid, butan-1-ol, phthalic acid, ethanol, ethyl acetate, CCl, were
purchased from local chemical company Vecton. Methyl valerate was synthesized using
triglyceride hydrolysis reaction.

All the substances were used without further purification, except CCl,;, which was distilled
to remove water according to the standard procedure. The concentrations of the substances and
mixtures in CCl, were selected individually taking into account the signal intensities:
concentrations of about 5% in CCl, were used, and lower concentrations were used if a substance
contained a strong oscillator (for example, C=0 functionality).

An infrared spectrum of a sample was recorded using a Shimadzu IRAffinity-1 Fourier
transform infrared spectrophotometer (Spectra 1-14, 16-18). Spectrum recording parameters
were as follows: wavenumbers range of 4000—-400 cm~', number of scans was 32, resolution of
2 cm~', Happ-Genzel apodization function. An analyzed solution was placed in a 0.025 mm thick
cuvette. The atmospheric spectrum and the CCl, spectrum were recorded before each substance
were subtracted from the recorded spectrum. All the data were converted to a wavenumbers
range of 4000 to 400 cm-', with a resolution of ~6 cm-'. The intensities in the ranges of 1500-1650
cm-' and 650-860 cm" were set to 0.001 to remove peaks corresponding to solvent absorption.

An additional external infrared spectra of a samples were recorded using a Bruker Tensor
27 Fourier transform infrared spectrophotometer to evaluate reproducibility of the model results
over instruments (Spectra 15, S19-S22). Spectrum recording parameters were as follows:
wavenumbers range of 4000—400 cm~!, number of scans was 40, resolution of 2 cm-', Blackman-
Harris 3-Term apodization function. Spectral data S19-S22 were not included in the data for
F;-score calculation on the external set.

While generating the training set: all the substances and pairs from the external test set
were strictly transferred to the generated test set using the swap_elements function only in this
case of if those substances and pairs were in the generated set.

The data separation procedure is as follows:

- For each substance in the external test, a check was performed to see if the spectrum of
this pure substance was present in processed_dataset. This was done manually.

- If it is, the row index of this substance in processed dataset was written to a separate list
(example, test, test_13 in the generate_db.py script).

- The function swap_elements operates by identifying elements in the train set that also
contain in the external test set, treating these overlaps as data leaks that must be removed from
train and transferred into the test set. The process begins by identifying common elements,

termed leaked_from_train elements, present in both train and external_test.
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- If no leakage is detected, the original sets are returned. If leakage is detected, the function
computes the size of the necessary swap and partitions the data: the new train and test set is
formed a pure_train set and pure_candidates from_test, excluding the elements from
external_test.

- A subset of these pure candidates (to_move_from_test), equal in size to num_to_swap, is
extracted from the test set. These elements are then inserted into the new_train set, replacing the
removed leaked elements.

- The new_test set is updated. The leaked_from_train elements are moved from the original
train set into the new_test set, replacing the first element of the to_move from_test subset that
was just used to fill up the train set.

It was applied to the following compounds - 1-bromohexane, methyl valerate, di-n-butyl
ether, cyclohexanone (spectral data for all these compounds are presented in the SDBS
database), and pairs of compounds — 1-bromohexane and hexan-1-ol; di-n-butyl ether and butan-
1-ol; cyclohexanol and cyclohexanone.

The presented interpretation of the infrared spectra is based on manual decoding and

presumptive identification of absorption peaks.

List of abbreviations in pictures:
str — stretching vibration;

bend — bending vibration;

Sciss — scissoring vibration;

wag — waggiing vibration.
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S5 External test set visualization and prediction

Spectrum 1: Cyclohexanol (0.0931 g) and cyclohexanone (0.0290 g) were dissolved in CCl,
(2.4465 g) to obtain the mixture of an alcohol and a ketone in a 76.25 : 23.75 mass ratio (4.75
wt% solution in CCl,;) and to simulate class «alcohol is contaminated with ketone» (class 13).
Then, 0.1390 g of this solution and 1.3287 g of CCl, were taken to reduce the concentration of

the mixture by ~ 10 times and obtain 0.45 wt% solution in CCl,.
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Figure S8. The IR-spectrum of the mixture of cyclohexanone and cyclohexanol in 76:24 ratio
(0.45 wt% solution in CCl,).

Table S2. Predictions of the model

Labels Alkane | Alcohol | Ketone | Purity class
True + + + alcohol is contaminated with ketone
Predicted | + + + alcohol is contaminated with ketone
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Spectrum 2: Cyclohexanone (0.0788 g) were dissolved in CCl, (1.6367 g) (4.59 wt%

solution in CCly).
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Figure S9. The IR-spectrum of pure cyclohexanone (4.6 wt% solution in CCly).

Table S3. Predictions of the model

Labels Alkane | Ketone | Purity class
True + + pure substance
Predicted | + + pure substance
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Spectrum 3: Propionyl chloride (0.1285 g) was dissolved in CCl, (2.4586 g) (4.97 wt%

solution in CCly).
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Figure S10. The IR-spectrum of pure propionyl chloride (5 wt% solution in CCl,).

Table S4. Predictions of the model

Labels Alkane | Haloalkane | Acyl halide | Purity class
True + + + pure substance
Predicted | + + + pure substance
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Spectrum 4: Propionyl chloride (0.1134 g) and propionic acid (0.0285 g) were dissolved in CCl,
(2.7000 g) to obtain the mixture of an acyl halide and an acid in 79.9 : 20.1 mass ratio (4.99 wt%

solution in CCl,) and to simulate class «acyl halide is contaminated with acid» (class 9).
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Figure S11. The IR-spectrum of the mixture of propionyl chloride and propionic acid in 80:20

ratio (5 wt% solution in CCly).

Table S5. Predictions of the model

Labels Alkane | Haloalkane | Alcohol | Carboxylic acid | Acyl halide | Purity class

True + + + + + Acyl halide is
contaminated

with acid

Predicted | + + + + + Acyl halide is
contaminated

with acid
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Spectrum 5: Propionyl chloride (0.1078 g) and propionic acid (0.0118 g) were dissolved in
CCl, (2.2574 @) to obtain the mixture of an acyl halide and an acid in 90.1 : 9.9 mass ratio (5.03

wt% solution in CCl,) and to simulate class «acyl halide is contaminated with acid» (class 9).
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Figure S12. The IR-spectrum of the mixture of propionyl chloride and propionic acid in 90:10

ratio (5 wt% solution in CCly).

Table S6. Predictions of the model

Labels Alkane | Halide | Alcohol | Carboxylic acid | Acyl halide | Purity class

True + + + + + Acyl halide is
contaminated

with acid

Predicted | + + + + + Acyl halide is
contaminated

with acid
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Spectrum 6: Propionic acid (0.0293 g) was added to a solution 2 to obtain the mixture of an
acyl halide and an acid in ~ 72.4 : 27.6 mass ratio ( ~ 6 wt% solution in CCl,) and to simulate

class «acyl halide is contaminated with by acid» (class 9).
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Figure S13. The IR-spectrum of the mixture of propionyl chloride and propionic acid in 72:28

ratio (6 wt% solution in CCl,).

Table S7. Predictions of the model

Labels Alkane | Halide | Alcohol | Carboxylic acid | Acyl halide | Purity class

True + + + + + Acyl halide is
contaminated with
acid

Predicted | + + + + - Pure
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Spectrum 7: Methyl valerate (0.0215 g) was dissolved in CCl4 (0.0428 g) (4.78 wt% solution
in CCly).
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Figure S14. The IR-spectrum of pure methyl valerate (4.8 wt% solution in CCl,).

Table S8. Predictions of the model

Labels Alkane | Ester | Ether | Purity class
True + + + pure substance
Predicted | + + + pure substance
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Spectrum 8: Methyl valerate (0.1801 g) and valeric acid (0.0316 g) were dissolved in CCl,
(1.8953 g) to obtain the mixture of an ester and an acid in 85.07 : 14.93 mass ratio (10.05 wt%

solution in CCl,) and to simulate class «ester is contaminated with acid» (class 14).
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Figure S15. The IR-spectrum of the mixture of methyl valerate and valeric acid in 85:15 ratio
(10.1 wt% solution in CCl,).

Table S9. Predictions of the model

Labels Alkane | Alcohol | Carboxylic Ester | Ether | Purity class
acid
True + + + + + Ester is contaminated with
acid
Predicted | + + + + + Ester is contaminated with
acid
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Spectrum 9: Valeric acid (0.0164 g) and CCl, (0.1714 g) was added to the solution 2 to
obtain the mixture of an ester and an acid in ~ 78.96 : 21.04 mass ratio ( ~ 9.94 wt% solution in

CCl,) and to simulate class «ester is contaminated with acid» (class 14).
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Figure S16. The IR-spectrum of the mixture of methyl valerate and valeric acid in 79:21 ratio
(~ 9.9 wt% solution in CCl,).

Table S10. Predictions of the model

Labels Alkane | Alcohol | Carboxylic Ester | Ether | Purity class
acid
True + + + + + Ester is contaminated with
acid
Predicted | + + + + + Ester is contaminated with
acid
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Spectrum 10: Valeric acid (0.0540 g) was dissolved in CCl4 (0.4910 g) (9.91 wt% solution
in CCly).
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Figure S17. The IR-spectrum of pure valeric acid (9.9 wt% solution in CCl,).

Table S11. Predictions of the model

Labels Alkane | Alcohol | Carboxylic acid | Purity class
True + + + pure substance
Predicted | + + + pure substance

S21



Spectrum 11: Di-n-butyl ether (0.0267 g) was dissolved in CCl, (0.4982 g) (5.09 wt%

solution in CCly).
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Figure S18. The IR-spectrum of pure di-n-butyl ether (5.1 wt% solution in CCl,).

Table S12. Predictions of the model

Labels Alkane | Ether | Purity class
True + + pure substance
Predicted | + + pure substance
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Spectrum 12: Di-n-butyl ether (0.1348 g) and butan-1-ol (0.0337 g) were dissolved in CCl,
(1.5275 g) to obtain the mixture of an ether and an alcohol in 80 : 20 mass ratio (9.94 wt% solution

in CCl,) and to simulate class «ether is contaminated with alcohol» (class 4).
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Figure S19. The IR-spectrum of the mixture of di-n-butyl ether and butan-1-ol in 80:20 ratio (9.9

wt% solution in CCl,).

Table S13. Predictions of the model

Labels Alkane | Alcohol | Ether | Purity class

True + + + Ether is contaminated with alcohol

Predicted | + + + Ether is contaminated with alcohol
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Spectrum 13: Di-n-butyl ether (0.5145 g) and butan-1-ol (0.0560 g) were dissolved in CCl,
(3.2383 g) to obtain the mixture of an ether and an alcohol in 90.2 : 9.8 mass ratio (14.98 wt%

solution in CCl,) and to simulate class «ether is contaminated with alcohol» (class 4).
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Figure S20. The IR-spectrum of mixture of di-n-butyl ether and butan-1-ol in 90:10 ratio (15 wt%

solution in CCly).

Table S14. Predictions of the model
Labels Alkane | Alcohol | Ether | Purity class

True + + + Ether is contaminated with alcohol

Predicted | + + + Ether is contaminated with alcohol
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Spectrum 14: Di-n-butyl ether (0.1779 g) and butan-1-ol (0.0307 g) were dissolved in CCl,
(1.1833 g) to obtain the mixture of an ether and an alcohol in 85.3 : 14.7 mass ratio (14.99 wt%

solution in CCl,) and to simulate class «ether is contaminated with alcohol» (class 4).
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Figure S21. The IR-spectrum of mixture of di-n-butyl ether and butan-1-ol in 85:15 ratio (15 wt%

solution in CCly).

Table S15. Predictions of the model
Labels Alkane | Alcohol | Ether | Purity class

True + + + Ether is contaminated with alcohol

Predicted | + + + Ether is contaminated with alcohol
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Spectrum 15: Di-n-butyl ether (0.8057 g) and butan-1-ol (0.0426 g) were dissolved in CCl,
(4.7465 g) to obtain the mixture of an ether and an alcohol in 95 : 5 mass ratio (15.16 wt% solution

in CCl,) and to simulate class «ether is contaminated with alcohol» (class 4).
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Figure S22. The IR-spectrum of mixture of di-n-butyl ether and butan-1-ol in 95:5 ratio (15.2
wt% solution in CCl,).

Table S16. Predictions of the model

Labels Alkane | Alcohol | Ether | Purity class
True + + + Ether is contaminated with alcohol

Predicted | + + + Ether is contaminated with alcohol
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Spectrum 16: 1-bromohexane (0.0632 g) was dissolved in CCl, (0.3532 g) (15.18 wt%

solution in CCly).
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Figure S23. The IR-spectrum of pure 1-bromohexane (15.2 wt% solution in CCl,).

Table S17. Predictions of the model

Labels Alkane | Halide | Purity class
True + + Pure substance
Predicted | + + Pure substance
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Spectrum 17: 1-bromohexane (0.1268 g) and hexan-1-ol (0.0229 g) were dissolved in CCI-
4 (0.8460 g) to obtain the mixture of a halide and an alcohol in 84.7 : 15.3 mass ratio (15 wt%

solution in CCl,) and to simulate class «halide is contaminated with alcohol» (class 10).
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Figure S24. The IR-spectrum of the mixture of 1-bromohexane and hexan-1-ol in 85:15 ratio (15

wt% solution in CCl,).

Table S18. Predictions of the model

Labels Alkane | Halide | Alcohol | Purity class
True + + + Halide is contaminated with alcohol
Predicted | + + + Halide is contaminated with alcohol
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Spectrum 18: 1-bromohexane (0.1723 g) and hexan-1-ol (0.0427 g) were dissolved in CCI-
4 (1.2314 g) to obtain the mixture of a halide and an alcohol in 80.1 : 19.9 mass ratio (14.9 wt%

solution in CCl,) and to simulate class «halide is contaminated with alcohol» (class 10).
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Figure S25. The IR-spectrum spectrum of the mixture of 1-bromohexane and hexan-1-ol in
80:20 ratio (14.9 wt% solution in CCly).

Table S19. Predictions of the model

Labels Alkane | Halide | Alcohol | Purity class
True + + + Halide is contaminated with alcohol
Predicted | + + + Halide is contaminated with alcohol
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S6. An additional set of spectral data that was not included for model
evaluation, showing the performance of the model

Spectrum S19: Di-n-butyl ether (0.0272 g) was dissolved in CCl, (0.5015 g) (5.14 wt%

solution in CCly).
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Figure S26. The IR-spectrum of pure di-n-butyl ether (5 wt% solution in CCl,).

Table S20. Predictions of the model
Labels Alkane | Ether | Purity class

True + + pure substance

Predicted | + + pure substance
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Spectrum S20: Di-n-butyl ether (0.5447 g) and butan-1-ol (0.0593 g) were dissolved in CCl,
(3.4237 g) to obtain the mixture of an ether and an alcohol in 90.2 : 9.8 mass ratio (15 wt% solution

in CCl,) and to simulate class «ether is contaminated with alcohol» (class 4).
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Figure S27. The IR-spectrum of the mixture of di-n-butyl ether and butan-1-ol in 90:10 ratio (15

wt% solution in CCl,).

Table S21. Predictions of the model

Labels Alkane | Alcohol | Ether | Purity class
True + + + Ether is contaminated with alcohol

Predicted | + + + Ether is contaminated with alcohol
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Spectrum S21: Propionyl chloride (0.1165 g) and propionic acid (0.0300 g) were dissolved in CCl,
(2.7094 g) to obtain the mixture of an acyl halide and an acid in 79.5 : 20.5 mass ratio (5.13 wt%

solution in CCl,) and to simulate class «acyl halide is contaminated with acid» (class 9).
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Figure S28. The IR-spectrum of the mixture of propionyl chloride and propionic acid in 80:20
ratio (5.1 wt% solution in CCly).

Table S22. Predictions of the model

Labels Alkane | Haloalkane | Alcohol | Carboxylic acid | Acyl halide | Purity class
True + + + + + Acyl halide is

contaminated

with acid

Predicted | + + + + + Acyl halide is
contaminated

with acid
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Spectrum S22: Propionyl chloride (0.1111 g) and propionic acid (0.0118 g) were dissolved
in CCl, (2.2606 g) to obtain the mixture of an acyl halide and an acid in 90.4 : 9.6 mass ratio (5.16

wt% solution in CCl,) and to simulate class «acyl halide is contaminated with acid» (class 9).
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Figure S29. The IR-spectrum of the mixture of propionyl chloride and propionic acid in 90:10
ratio (5.2 wt% solution in CCly).

Table S23. Predictions of the model
Labels Alkane | Halide | Alcohol | Carboxylic acid | Acyl halide | Purity class

True + ¥ + + + Acyl halide is
contaminated

with acid

Predicted | + + + + + Acyl halide is
contaminated

with acid
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Spectra S23: Ethanol (0.2043 g) was added to ethyl acetate (1.0098 g) to obtain a mixture
of ester and alcohol in a ~ 83.2 : 16.8 mass ratio (in KBr) and to simulate class «Ester is

contaminated with alcohol» (class 14).
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Figure S30. The IR-spectrum of the mixture of ethyl acetate and ethanol in 83:17 ratio (in KBr).
Table S24. Predictions of the model
Labels Alkane | Alcohol | Ester | Ether | Purity class

True + + + + Ester is contaminated with alcohol

Predicted | + + + + Ester is contaminated with alcohol
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Spectra S25: Water (0.1381 g) was added to propionic acid (0.8010 g) to obtain a mixture
of acid and water in a ~ 85.3 : 14.7 mass ratio and to simulate class «molecule is contaminated

with water » (class 3).
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Figure S31. The IR-spectrum of the mixture of propionic acid and water in 85:15 ratio (in KBr).

Table S25. Predictions of the model

Labels Alkane | Alcohol | Carboxylic acid | Purity class
True + + + Molecule is contaminated with water
Predicted | + + + Molecule is contaminated with water
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Spectra S26: Pure phthalic acid (in KBr)
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Figure S32. The IR-spectrum of pure phthalic acid (in KBr).
Table S26. Predictions of the model
Labels Arene | Haloalkane | Alcohol | Carboxylic Purity class
acid
True + - + + Pure substance
Predicted | + + + + Molecule is contaminated with
water
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Spectra S26: Pure propionic acid (in KBr)
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Figure S33. The IR-spectrum of pure propionic acid (in KBr).
Table S27. Predictions of the model
Labels Alkane | Haloalkane | Alcohol | Carboxylic Purity class
acid
True + - + + Pure substance
Predicted | + + + + Molecule is contaminated with
water
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S7 Balanced test set prediction

Table S28. Performance summary of trained model in balanced test data for purity prediction

task.

Class ID Class name Precision Recall F,
0 Pure substance 0.64 0.93 0.76
1 Aldehyde is contaminated with

carboxylic acid 1 093 096
Aldehyde is contaminated with alcohol 0.94 1 0.97
Alcohol, or carboxylic acid, or aldehyde,
or ester, or ether, or ketone, or phenol is 0.85 1 0.92
contaminated with water
Ether is contaminated with alcohol 0.93 0.81 0.87
Amide is contaminated with ester 1 1 1
Amide is contaminated with carboxylic 1 1 1
acid
7 Aromatic amine with nitro group is ] ] ]
contaminated with phenol
Amine is contaminated with halide 1 1 1
Acyl halide is contaminated with ] ] ]
carboxylic acid
10 Halide is contaminated with alcohol 1 0.88 0.93
11 Halide is contaminated with amine 1 0.75 0.86
12 Alcohol is contaminated with aldehyde 1 1 1
13 Alcohol is contaminated with ketone 1 0.94 0.97
14 Ester is contaminated with carboxylic
acid or alcohol 088 094 091
15 Nitrile is contaminated with carboxylic
acid 1 0.86 0.92
Average 0.95 0.94 0.94

S38




Table S29. Performance summary of trained model in balanced test data for functional group

prediction task.

Class Class name Precision | Recall F4 Frequency

ID

0 Alkane 1.00 0.98 0.99 214
1 Alkene 0.94 0.73 0.82 22
2 Arene 0.98 1.00 0.99 56
3 Halide 0.99 0.98 0.98 82
4 Alcohol 0.99 0.98 0.99 203
5 Aldehyde 1.00 1.00 1.00 48
6 Ketone 1.00 0.81 0.89 21
7 Carboxylic acid 1.00 0.95 0.98 66
8 Acyl halide 1.00 1.00 1.00 14
9 Ester 1.00 1.00 1.00 42
10 Ether 1.00 1.00 1.00 68
11 Amine 1.00 0.74 0.85 35
12 Amide 1.00 1.00 1.00 10
13 Nitrile 1.00 1.00 1.00 14
14 Phenol 1.00 0.93 0.96 27
15 Nitro 1.00 1.00 1.00 16

Average 0.99 0.94 0.97
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S8 Imbalanced test set prediction

Pure substance 0 2 1 0 2 0 1 6 0 0
Aldehyde + Acid - 5 1 0 0 0 0 0 0 0 0
Aldehyde + Alcohol - Q 0 ] 0 0 0 0 0 0 0 0
Molecule + Water - 14 0 0 0 0 3 Ik 0 0 0 0
Ether + Alcohol - 14 0 0 0 0 0 0 0 0 0 0 0
Amide + Ester- 0 0 0 0 0 9 0 0 0 0 0 0 0
" Amide + Acid - 1 0 0 0 0 0 8 0 0 0 0 0 0
2 Amine + Phenol - 0 0 0 0 0 0 0 0 0 0 o0 0 0
T Amine + Halide - 0 0 0 0 0 0 0 0 0 0 0 0 0
F Acylhalide + Acid - 0 0 0 0 0 0 0 0 0 6 0 0 0 0
Halide + Alcohol - 0 0 0 3 0 0 0 0 0 0 2 0 0
Halide + Amine - 3 0 0 0 0 0 0 0 0 0 0 0 0
Alcohol + Aldehyde - 0 0 0 0 0 0 0 0 0 0 0 % 0

Alcohol + Ketone - 0 0 0 al 0 0 0 0 0 0 0 0 0
Ester + Acid - 14 0 0 0 3 0 0 2 0 0 0 0 0 0
Nitrile + Acid - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure S34. Confusion matrix for purity-predictions task for imbalanced test set.
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Table S30. Performance summary of trained model in imbalanced test data for purity prediction

task.
Class ID Class name Precision Recall Fi
0 Pure substance 0.88 0.90 0.89
1 Aldehyde is contaminated with 1 0.83 0.91
carboxylic acid
Aldehyde is contaminated with alcohol 0.75 1 0.86
3 Alcohol, or carboxylic acid, or aldehyde, 0.98 0.97 0.98

or ester, or ether, or ketone, or phenol is

contaminated with water

4 Ether is contaminated with alcohol 0.80 0.74 0.77

Amide is contaminated with ester 0.90 1 0.95

6 Amide is contaminated with carboxylic 1 0.88 0.94
acid

7 Aromatic amine with nitro group is 0.8 1 0.89

contaminated with phenol

Amine is contaminated with halide 0.71 1 0.83
Acyl halide is contaminated with 0.86 1 0.92
carboxylic acid
10 Halide is contaminated with alcohol 0.95 0.79 0.86
11 Halide is contaminated with amine 0.53 0.75 0.62
12 Alcohol is contaminated with aldehyde 1 1 1
13 Alcohol is contaminated with ketone 1 0.92 0.96
14 Ester is contaminated with carboxylic 0.96 0.92 0.94
acid or alcohol
15 Nitrile is contaminated with carboxylic 0.86 1 0.92
acid
Average 0.87 0.92 0.89
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Table S31. Performance summary of trained model in imbalanced test data for functional group

prediction task.

Class Class name Precision | Recall F4 Frequency

ID

0 Alkane 0.98 1.00 0.99 1232
1 Alkene 0.94 0.91 0.92 235
2 Arene 0.99 0.98 0.98 583
3 Halide 0.92 0.97 0.94 368
4 Alcohol 0.97 0.95 0.96 735
5 Aldehyde 0.95 1.00 0.97 57
6 Ketone 0.98 0.93 0.96 116
7 Carboxylic acid 0.94 0.91 0.93 203
8 Acyl halide 0.79 1.00 0.88 11
9 Ester 0.99 0.99 0.99 584
10 Ether 0.98 0.99 0.99 783
11 Amine 0.83 0.86 0.84 98
12 Amide 0.70 1.00 0.82 14
13 Nitrile 0.92 0.71 0.80 17
14 Phenol 0.99 0.91 0.95 156
15 Nitro 0.90 1.00 0.95 18

Average 0.92 0.94 0.93
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S9 Comparison of real and generated spectra
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Figure S35. Part 1. Evaluation of the effectiveness of the approach to spectrum generation
using linear combination: generated infrared spectra of mixture with added noise (blue line) and

without noise added (red line) and actual IR spectra of the corresponding mixtures (green line).
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Figure S35. Part 2. Evaluation of the effectiveness of the approach to spectrum generation

using linear combination: generated infrared spectra of mixture with added noise (blue line) and

without noise added (red line) and actual IR spectra of the corresponding mixtures (green line).
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