

Supplementary information to the article “Chain collapse and dynamics of inhomogeneities in aqueous solutions of poly(N-isopropylacrylamide) and its block copolymers with polyethylene glycol”

Georgii A. Simenido ^{*a}, Timofei D. Shatrov ^a, Elena V. Chernikova ^a and Elena N. Golubeva ^a

^aM.V. Lomonosov Moscow State University, Chemistry Department, Leninskiye Gory, 1/3, Moscow, Russian Federation

* Corresponding Author (simenido1@gmail.com)

EPR spectra processing and simulation

The amplitudes and linewidths of the spectral lines were measured using the EsrD program (Chemistry Faculty of Lomonosov Moscow State University).¹ All spectra simulations were performed using homemade scripts for the EasySpin (v. 6.0.2) open-source MATLAB toolkit.^{2,3} Simulation quality was determined by calculation of the root mean square deviation (RMSD) value between simulated and experimental spectra. The following values were taken as the initial values of diagonalized **g**- and **A**-tensors: $g_x = 2.0092$, $g_y = 2.0062$, $g_z = 2.0022$; $A_{xx} = 0.71$ mT, $A_{yy} = 0.70$ mT, $A_{zz} = 3.71$ mT.

Spin-Hamiltonian and dynamic parameters of TEMPO in PNIPA-1 inhomogeneities (type **B** particles) were determined from their individual EPR spectrum obtained via Cu^{2+} ions addition and were used in simulation of total spectra without variations. In the case of TEMPO in PEG1-*b*-PNIPA and PEG2-*b*-PNIPA inhomogeneities (type **C** and type **D** particles, respectively), where suppression of type **A** particles (TEMPO in solution) signal by copper ions isn't applicable due to complexation with polymers functional groups, parameters of type **B** particles were used as an initial approximation and were varied in simulation. In addition to hyperfine splitting on the ¹⁴N nuclei, the spectra contain satellite lines arising from hyperfine coupling with the six ¹³C nuclei ($I = \frac{1}{2}$) located close enough to the N-O group in the TEMPO molecule. To describe this feature, the ¹³C nucleus with an increased abundance is six times and $a_{iso} = 0.54$ mT was added to the simulation.

The ‘chili’ function in EasySpin utilizing the Schneider–Freed theory^{4,5} for slowly tumbling nitroxides was used to simulate TEMPO spectra. The anisotropic values of the spin Hamiltonian parameters (the **g**-tensor and **A**-tensor) were averaged to obtain the g_{iso} and a_{iso} values. The

rotational correlation time (t_{corr}) was calculated from the averaged rotational diffusion constant as described in ref. ⁵:

$$g_{iso} = \frac{1}{3}(g_x + g_y + g_z); a_{iso} = \frac{1}{3}(A_{xx} + A_{yy} + A_{zz}); t_{corr} = \frac{1}{6\sqrt[3]{D_{xx}D_{yy}D_{zz}}}$$

In the case of the spectra containing two types of the particles (probe in bulk solution (type **A**) and inside polymer inhomogeneities (types **B/C/D**, denoted in the formula as type **X**) fraction of the latter probes type was calculated from weight values of type **X** particles in the full EPR spectra, considering that the weight of type **A** particles is equal to 1:

$$x(X) = \frac{w(X)}{1 + w(X)}$$

The uncertainties for the simulated parameters were estimated as follows:

$$g_{iso} \pm 0.00003; a_{iso} \pm 0.01 mT; x \pm 1\%; t_{corr} \pm 0.1 ns$$

Table S1 shows the parameters of all particles encountered in this work. Parameters of type **E** particles, belonging to PNIPA-2 polymer, are presented for comparison. All parameters are taken at $T = 60$ °C.

Table S1. Magnetic and dynamic parameters of particles used in present work, $T = 60$ °C.							
Particle Type	Environment	a_{iso} , mT	t_x , ns	t_y , ns	t_z , ns	t_{iso} , ns	x, %
A	Bulk solution	1.73	0.01	0.01	0.01	0.01	-
B	PNIPA-1	1.62	24.0	0.5	1.7	2.7	35
C	PEG1-b-PNIPA	1.62	31.1	0.3	2.3	2.9	41
D	PEG2-b-PNIPA	1.62	30.2	0.5	1.9	3.3	56
E	PNIPA-2 ⁶	1.60	17.8	0.3	1.8	2.1	63

References

- 1 A. I. Kokorin, *Nitroxides - Theory, Experiment and Applications*, InTech, 2012.
- 2 S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, *Journal of Magnetic Resonance*, 2006, 178, 42–55.
- 3 S. Stoll, in *Multifrequency Electron Paramagnetic Resonance*, Wiley, 2014, pp. 69–138.
- 4 D. J. Schneider and J. H. Freed, 1989, pp. 1–76.
- 5 D. E. Budil, S. Lee, S. Saxena and J. H. Freed, Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in One and Two Dimensions Using a Modified Levenberg–Marquardt Algorithm, *J Magn Reson A*, 1996, 120, 155–189.

6 E. M. Zubanova, S. V. Kostjuk, P. S. Timashev, Y. A. Rochev, A. I. Kokorin, M. Ya. Melnikov and E. N. Golubeva, Inhomogeneities in PNIPAM Aqueous Solutions: The Inside View by Spin Probe EPR Spectroscopy, *Polymers (Basel)*, 2021, 13, 3829.