Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2026

Supplementary Information — Structural Basis of

Glycoform Selectivity in Prion Strains

Francesca Peccati* '+

T Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and
Technology Alliance (BRTA) Bizkaia Technology Park, 48160 Derio, Spain

Tlkerbasque, Basque Foundation for Science, 48013 Bilbao, Spain

E-mail: fpeccati@cicbiogune.es

Phone: +34 946 572 538

S1

Contents
1 Supplementary figures

2 Torsional Configurational Entropy Analysis
2.1 Workflow
2.2 Results
2.3 Estimation of the optimal binning size
2.4 Scripts
find_optimal bins.py

compute_entropy N180.pyo
3 Sample NCIPLOT4 input
4 Sample script for strand reordering
5 Sample script for Ca RMSF calculation
6 Sample script for glycans RMSF calculation
7 Sample script for per-residue SASA analysis

8 Sample script for inter-strand Ca distances

S 2

25

26

30

31

32

34

1 Supplementary figures

RML glycosylated N180/N196 w.o. sialic acid

RMSF (A)
0318

Figure S 1: Ca root-mean-square fluctuations (RMSFs) from the 1.5 us MD simulations of
RML and MET fibrils glycosylated with unsialylated glycans. Cartoon thickness and color
are scaled to RMSF values, with more rigid structural elements shown as thin blue cartoons
and more flexible regions as thick red cartoons. Glycans are depicted as grey lines.

S 3

RML glycosylated N180/N196 w.o. sialic acid

RMSF (A)
0.3 4.0

ME?7 glycosylated N180/N196 w.o. sialic acid

Figure S 2: Per-carbohydrate unit RMSF's of the glycans from the 1.5 us MD simulations
of RML and MET fibrils glycosylated with unsialylated glycans. Fibril strands are shown as
grey cartoons, and glycans as sticks. Stick colors are scaled according to RMSF values, with
more conformationally constrained carbohydrate units shown in blue and more flexible ones
in red.

S4

GlcNAC GIcNAc

Figure S 3: Radial plots showing carbohydrate units at position N180 in the RML and ME7
fibrils (glycosylated with unsialylated glycans) that participate in inter-glycan cumulative
hydrogen bond frequencies of at least 2.4 with other carbohydrate units over the 1.5 us
MD simulations. Because a given carbohydrate unit can form hydrogen bonds with multiple
partners simultaneously, cumulative frequency values may exceed 1. Plot x-tick labels denote
carbohydrate types.

Sb

RML

2.00
Type
1.75 Il Sia (0.0%)
I Fuc (92.6%)
1.50 I Man (0.0%)
c Gal (3.9%)
o IcNA .59
2125 I GIcNAC (3.5%)
o
=
£1.00
©
S
€ 0.75
o}
O
0.50 1
0.00-
~ ~ ~ ~ ~ o~ [
= = = o = = 3
la) la) a) [a) a) = =
ME7
2.00
Type
1.75 Il Sia (0.0%)
Il Fuc (56.9%)
1.50 1 I Man (14.4%)
Gal (10.1%)
I GIcNAC (18.6%)

=
N
&

Cumulative fraction
_O =
~ o
w o

n N
(<)} [¢)]
— —
58] w

K109
K109
E195
E195
K109
E195
E195
K184
K109
K109
E195
K109

Figure S 4: Stacked bar chart by carbohydrate class plots showing amino acid residues
from RML and ME7 fibril models glycosylated with unsialylated glycans that participate
in cumulative hydrogen bond frequencies with glycans of at least 0.5 over the 1.5 pus MD
simulations. Cumulative hydrogen bond frequencies are decomposed into contributions from
individual carbohydrate types: GleNAc (blue), Fuc (red) and Gal (yellow). Because a single
amino acid can simultaneously form hydrogen bonds with multiple carbohydrate units, cu-
mulative frequency values may exceed 1. Plot tick labels indicate the amino acid identities,
with lysines (K) highlighted in bold. The percentage contribution of each carbohydrate type
to the total glycan-fibril hydrogen bonds is shown.

S 6

2 Torsional Configurational Entropy Analysis

2.1 Workflow

The script compute_entropy N180.py computes the torsional configurational entropy of an
attached glycan using the Mutual Information Spanning Tree (MIST) formalism. It processes
a multi-model PDB trajectory containing multiple conformations of the glycan and executes

the following steps:

1. Residue and connectivity definition. The glycan residue range (RESSEQ_RANGE)
and the inter-residue glycosidic linkages (CONNECTIVITY_TEXT) are specified to define

the molecular graph.

2. Structure parsing and atom selection. Heavy atoms corresponding to the selected

glycan residues are extracted from the topology using the mdtraj library.

3. Bond and dihedral enumeration. Intra-residue ring bonds and exocyclic heavy-
atom bonds are identified automatically. User-defined inter-residue linkages are then
incorporated to build the full heavy-atom connectivity graph, from which all rotatable

dihedral angles (excluding ring bonds) are enumerated.

4. Angle extraction and entropy estimation. Dihedral time series are computed for
each frame of the trajectory. One-dimensional torsional entropies and pairwise mutual

informations are calculated from the binned angular distributions.

5. MIST correction and total entropy. A maximum-information spanning tree
(MIST) is constructed from the mutual information matrix. The total torsional entropy

is then estimated as:

S=>"Hi— Y I

(i,§)EMST

in natural logarithmic units (nats) and in S/kp.

ST

6. Output. For each glycan segment analyzed, the script produces:

e A CSV file listing all dihedral definitions and their individual entropies;
e A CSV file of MIST edges and corresponding mutual information values;

e A JSON summary file containing global entropy values and computation param-

eters;

e A printed estimation of the free energy contribution at 300 K, computed as:

AGgooK = —0.593 x (AS/]{?B)

in keal mol™!.

The main execution block automates the analysis over multiple contiguous glycan selec-
tions within the trajectory and reports the mean and standard deviation of the resulting
entropic free-energy contributions.

The script was executed on 300 frames sampled with an even stride from the 1.5 us MD

simulations as:

python compute_entropy_N180.py full_traj_every_5.pdb > log_entropy_N180

2.2 Results
Entropy calculation log for RML (N180 glycan, sialylated).

Processing selection 1: resSeq 1765 to 1782
S/kB : 40.664188

dG_300K : -24.113864 kcal/mol

Processing selection 2: resSeq 1747 to 1764
S/kB 1 45.629522

dG_300K : -27.058307 kcal/mol
Processing selection 3: resSeq 1729 to 1746
S/kB : 38.170318

dG_300K : -22.634999 kcal/mol

Processing selection 4: resSeq 1711 to 1728

S/kB 1 41.477473

S8

dG_300K : -24.596142 kcal/mol

Processing selection 5: resSeq 1693 to 1710
S/kB : 43.751144

dG_300K : -25.944429 kcal/mol

Processing selection 6: resSeq 1675 to 1692
S/kB : 39.910851

dG_300K : -23.667135 kcal/mol

Processing selection 7: resSeq 1657 to 1674
S/kB : 38.950095

dG_300K : -23.097406 kcal/mol

Processing selection 8: resSeq 1639 to 1656
S/kB 1 41.649705

dG_300K : -24.698275 kcal/mol

Processing selection 9: resSeq 1621 to 1638
S/kB 1 40.017418

dG_300K : -23.730329 kcal/mol

Processing selection 10: resSeq 1783 to 1800
S/kB : 43.301650

dG_300K : -25.677878 kcal/mol

Processing selection 11: resSeq 1603 to 1620
S/kB 1 40.412641

dG_300K : -23.964696 kcal/mol

Processing selection 12: resSeq 1585 to 1602
S/kB : 37.080079

dG_300K : -21.988487 kcal/mol

Summary of All Selections =

Start End S/kB dG_300K

1765 1782 4

o

.664188 -24.113864

1747 1764 4

a

.629522 -27.058307

1729 1746 3

00

.170318 -22.634999

1711 1728 4

=

L4T7473 -24.596142

1693 1710 4

@

.751144 -25.944429
1675 1692 3

©

.910851 -23.667135
1657 1674 3

3

.950095 -23.097406
1639 1656 4

i

.649705 -24.698275
1621 1638 4

o

.017418 -23.730329
1783 1800 4

W

.301650 -25.677878

1603 1620 4

o

.412641 -23.964696

1685 1602 3

3

.080079 -21.988487

MEAN 4

o

.917924 -24.264329

STD

N

.328315

-

.380691

Entropy calculation log for ME7 (N180 glycan, sialylated).

Processing selection 1: resSeq 1633 to 1650

S9

S/kB

dG_3

Proces
S/kB

dG_3

Proces
S/kB

dG_3

Proces
S/kB

dG_3

Proces
S/kB

dG_3

Proces;
S/kB

dG_3

Proces
S/kB

dG_3

Proces
S/kB

dG_3

Proces;
S/kB

dG_3

Proces
S/kB

dG_3

Proces
S/kB

dG_3

Proces;
S/kB

dG_3

1 37.145345

00K : -22.027189

sing selection 2:

: 31.024648
00K : -18.397616
sing selection 3:

: 40.738903
00K : -24.158170
sing selection 4:

: 33.239344
00K : -19.710931
sing selection 5:

1 37.211445
00K : -22.066387
sing selection 6:

: 40.594308
00K : -24.072425
sing selection 7:

: 32.159039
00K : -19.070310
sing selection 8:

1 36.487763
00K : -21.637244
sing selection 9:

1 40.793277
00K : -24.190413
sing selection 10:

: 40.683202
00K : -24.125139
sing selection 11:

: 43.518782
00K : -25.806638
sing selection 12:

1 36.242599

00K : -21.491861

Summary of All Selections =

kcal/mol

resSeq 1651 to

kcal/mol

resSeq 1669 to

kcal/mol

resSeq 1687 to

kcal/mol

resSeq 1705 to

kcal/mol

resSeq 1723 to

kcal/mol

resSeq 1741 to

kcal/mol

resSeq 1759 to

kcal/mol

resSeq 1777 to

kcal/mol

1668

1686

1704

1722

1740

1758

1776

1794

resSeq 1795 to 1812

kcal/mol

resSeq 1813 to 1830

kcal/mol

resSeq 1831 to 1848

kcal/mol

End S/kB dG_300K
1650 37.145345 -22.027189
1668 31.024648 -18.397616
1686 40.738903 -24.158170
1704 33.239344 -19.710931
1722 37.211445 -22.066387
1740 40.594308 -24.072425
1758 32.159039 -19.070310

S 10

1759 1776 36.487763 -21.637244
1777 1794 40.793277 -24.190413
1795 1812 40.683202 -24.125139
1813 1830 43.518782 -25.806638

1831 1848 36.242599 -21.491861

MEAN 37.486555 -22.229527

STD 3.749347 2.223363

2.3 Estimation of the optimal binning size

The optimal number of bins for this analysis (72) was determined with the following find _optimal bins.py
script, that estimates optimal one- and two-dimensional histogram bin counts for torsional
entropy calculations based on the MIST (Mutual Information Spanning Tree) formalism.
It analyzes a multi-model PDB trajectory containing glycan conformations and provides

per-selection and global recommendations for the number of angular bins.

1. Residue selection and connectivity. The user specifies the glycan residue ranges
and the inter-residue glycosidic linkages. Residue ordinals are defined relative to the

first residue within each selection.

2. Trajectory parsing and atom selection. The trajectory is read using mdtraj.

Heavy atoms from the selected residues are identified, excluding hydrogens.

3. Bond and dihedral construction. Intra-residue ring and exocyclic heavy-atom
bonds are automatically detected, and user-defined inter-residue linkages are added
to construct the heavy-atom connectivity graph. All rotatable dihedral angles are

enumerated, excluding ring-centered bonds.

4. Angular analysis. Dihedral angles are computed across all trajectory frames. For
each dihedral distribution, the circular standard deviation and interquartile range are

used to estimate optimal one-dimensional bin widths following the Scott, Freedman-

S 11

Diaconis, and square-root rules adapted for circular variables:

hs =3509gN"Y3 hp=20IQR,N~/3,

leading to approximate bin counts bg = 27 /hg, bp = 27/hp, and bg = V' N. The final
1D bin count is the median of these estimates, further constrained to maintain a target

mean occupancy of ~20 samples per bin.

5. 2D bin recommendation. Two-dimensional bin counts (nbins_2d) are derived from
the total number of samples, enforcing an average of ~30 samples per 2D cell, with

the condition that nbins_2d < nbins_1d.
6. Output. For each glycan selection, the script reports:

e the number of frames and torsional angles analyzed,
e recommended nbins_1d and nbins_2d values,
e an aggregated global recommendation across all selections.

All results are written to a JSON file (_bins_summary. json) containing detailed per-

selection and global binning parameters.

This utility provides consistent and statistically justified binning parameters for use in
MIST-based torsional entropy analyses, ensuring comparable entropy estimates across mul-

tiple glycan segments.

2.4 Scripts

find_optimal _bins.py

#!/usr/bin/env python3

-*- coding: utf-8 —*-

Estimate optimal 1D/2D histogram bin counts for torsional entropy (MIST)

from a multi-model PDB, using user-defined glycan selection and connectivity.

S 12

- Selection: inclusive PDB resSeq range(s)
- Connectivity: lines like ’bond 1.06 18.C1’ where residue ordinals start

at 1 for the FIRST residue within the selection, in topology order.

Outputs:
- Per-selection recommended nbins_1d and nbins_2d
- Global recommendation across selections

- JSON summary

Requires: mdtraj, numpy

import re, json, sys
import numpy as np

import mdtraj as md

USER INPUT
PDB_PATH = "/mnt/data/repl_reordered_stride_50.pdb" # can be overridden by argv[1]

Selections (match your attached scripts style)

STARTING_RESIDUES = [1633, 1651, 1669, 1687, 1705, 1723, 1741, 1759, 1777,
SELECTION_LENGTH = 18 # residues per selection

OUT_PREFIX = "bins_reco"

Inter-residue connectivity (ordinals are 1-based within each selection)
CONNECTIVITY_TEXT = """

bond 1.06 18.C1

bond 1.04 2.C1

bond 2.04 3.C1

bond 3.06 8.C1
bond 3.03 4.C1
bond 8.06 12.C1
bond 8.02 9.C1

bond 12.04 13.C1
bond 13.03 14.C1
bond 14.04 15.C1
bond 14.03 17.C1
bond 15.03 16.C2
bond 9.04 10.C1
bond 10.06 11.C2
bond 4.02 5.C1

bond 5.04 6.C1

bond 6.06 7.C2

.strip()

Targets and clamps for binning

NB1_MIN, NB1_MAX = 12, 180

NB2_MIN, NB2_MAX = 12, 60

TARGET_1D_COUNTS_PER_BIN = 20.0 # average samples per (occupied) 1D bin

TARGET_2D_COUNTS_PER_CELL = 30.0 # average samples per 2D cell

UTILITIES

def _to_index_set(idx_like):
out = []
def add(x):
if isinstance(x, (int, np.integer)): out.append(int(x))

elif isinstance(x, (list, tuple, set, np.ndarray)):

S 13

1795,

1813,

1831]

for y in x: add(y)
else:
try: out.append(int(x))
except Exception: pass
add(idx_like)

return set(out)

def load_traj_pdb(path):
t = md.load_pdb(path)
print("N. frames", t.n_frames)
if t.n_frames < 1: raise ValueError("No frames in PDB.")

return t

Q.
]
=3

select_glycan_heavy(top, start_resseq, end_resseq):
sel = top.select(f"(resSeq {start_resseq} to {end_resseq}) and not element H")
if sel.size == 0: raise ValueError("Selection empty; check resSeq range and elements.")

return sel

de

=

residues_in_selection_order(top, heavy_idx):

heavy = _to_index_set (heavy_idx)

res = []

seen = set()

for r in top.residues:

if any(a.index in heavy for a in r.atoms):
if r.index not in seen:

seen.add(r.index); res.append(r)

return res # ordinals = 1..len(res)

def parse_connectivity(text, res_list):

"""Parse ’bond X.Y U.V’ to atom-index pairs (i,j)."""

edges = []

line_re = re.compile(r"~\s*bond\s+(\S+)\s+(\S+)\s*$", re.IGNORECASE)

def tok_to_index(tok):
parts = tok.split(".")
if len(parts) != 2: raise ValueError(f"Bad token ’{tok}’ (need ’ord.atom’)")
rord = int(parts[0]); aname = parts[1].strip()
if not (1 <= rord <= len(res_list)):

raise ValueError(f"Residue ordinal {rord} out of range 1..{len(res_list)}")

res = res_list[rord-1]
idx = None

for a in res.atoms:

if a.name.strip() aname: idx = a.index; break
if idx is None:
au = aname.upper ()
for a in res.atoms:
if a.name.strip().upper() == au: idx = a.index; break
if idx is Nome:
raise ValueError(f"Atom ’{aname}’ not found in residue ordinal {rord} ({res.name} {res.resSeq})")
return idx
for line in text.splitlines():
if not line.strip() or line.strip().startswith("#"): continue
m = line_re.match(line.strip())
if not m: raise ValueError(f"Unrecognized connectivity line: ’{line}’")
i, j = tok_to_index(m.group(1)), tok_to_index(m.group(2))
if i != j: edges.append((min(i,j), max(i,j)))

return edges

S 14

def ring_bonds_by_names(top, allowed_idx):
"""Six-member ring bonds per residue name."""
allowed = _to_index_set(allowed_idx)
ring_pairs_default = [("C1","05"),("05","C5"),("C5","C4"),("C4","C3"),("C3","C2"),("C2","C1")]
ring_pairs_O0SA = [('c2","06"),("06","C6"),("C6","CE"), ("C5","C4"), ("C4","C3"), ("C3","C2")]
ring = set()
res_ids = set(top.atom(i).residue.index for i in allowed)
for ridx in res_ids:
res = list(top.residues) [ridx]
names = {a.name.strip(): a.index for a in res.atoms
if a.index in allowed and (a.element is None or a.element.symbol != "H")}
pairs = ring_pairs_O0SA if res.name.strip() == "OSA" else ring_pairs_default
for nl, n2 in pairs:
if nl in names and n2 in names:
i, j = names[n1], names[n2]
ring.add(frozenset((i, j)))

return ring

de

=N

exocyclic_heavy_bonds_by_names(top, allowed_idx):
"""Minimal intra-residue heavy bonds useful for torsioms."""
allowed = _to_index_set(allowed_idx)
bonds = set()
res_ids = set(top.atom(i).residue.index for i in allowed)
for ridx in res_ids:
res = list(top.residues) [ridx]
mm = res.name.strip()
names = {a.name.strip(): a.index for a in res.atoms
if a.index in allowed and (a.element is None or a.element.symbol != "H")}
pairs = [("C4","04"),("C3","03")]
if nm == "0SA": pairs += [("C2","C1"),("C1","01"),("C5","05")]
else: pairs += [("C5","C6"),("C6","06"),("C2","02"),("C1","01")]
for nl, n2 in pairs:
if n1 in names and n2 in names:
i, j = names[ni], names[n2]
bonds.add(frozenset ((i, j)))

return bonds

def build_adjacency(top, heavy_idx, connectivity_pairs):
heavy = _to_index_set (heavy_idx)
adj = {i: set() for i in heavy}
ring_b = ring_bonds_by_names(top, heavy)
exo_b = exocyclic_heavy_bonds_by_names(top, heavy)
def add(i,j):
if i in adj and j in adj: adj[il.add(j); adj[jl.add(i)
for e in ring b | exo_b:
i, j = tuple(e); add(i,j)
for (i,j) in connectivity_pairs:
add(i,j)

return adj, ring_b

def enumerate_dihedrals(adj, ring_bonds):
"""A11 (a,b,c,d) with b-c edge, not a ring central bond."""
D = set()
for b, nbrs in adj.items():

for c¢ in nbrs:

S 15

if b >= c: continue

if frozenset((b,c)) in ring_bonds: continue

As = [x for x in adj[b] if x != c]

Ds = [x for x in adjlc] if x != b]

if not As or not Ds: continue

for a in As:

for d in Ds:

if a ==d or a == b or d == c: continue
D.add((int(a), int(b), int(c), int(d)))

return sorted(D)

Q.
®
=3

de

=N

def

CIRCULAR STATS BINS
circ_std(theta):

N

theta.size

C = np.sum(np.cos(theta))/N
S = np.sum(np.sin(theta))/N
R = np.hypot(C, S)

return float (np.sqrt(max(0.0, -2.0*np.log(max(R, 1e-12)))))

circ_iqr(theta):

mu = np.arctan2(np.sum(np.sin(theta)), np.sum(np.cos(theta)))
x = (theta - mu + np.pi) % (2*np.pi) - np.pi

925, q75 = np.quantile(x, 0.25), np.quantile(x, 0.75)

dq = q75 - g25

if dq > np.pi: dq = 2*np.pi - dq

return float(dq)

recommend_nbins_1d_for_angle(theta):
N = int(theta.size)
if N < 50: return 24

circ_std(theta)

sc

iq = circ_iqr(theta)

hS = max(le-3, 3.5%sck(N*x(-1/3)))
hF = max(le-3, 2.0%ig*(N**(-1/3)))
bS = int(np.floor(2*np.pi/hS))

bF = int(np.floor(2+*np.pi/hF))

bQ = int(np.floor(np.sqrt(N)))

nb = int(np.median([bS, bF, bQ]))

enforce average occupancy target

nb_cap = max(NB1_MIN, min(NB1_MAX, int(np.floor(N / TARGET_1D_COUNTS_PER_BIN)) if N >= TARGET_1D_COUNTS_PER_BIN else NB1_MIN))

nb = int(np.clip(nb, NB1_MIN, min(NB1_MAX, nb_cap)))

return nb

recommend_global_bins(angle_matrix):
wn
angle_matrix: shape (N_frames, N_dihedrals)
Returns: nbl_global, nb2_global
wn
N, D = angle_matrix.shape
if D == 0 or N < 2:
return NB1_MIN, NB2_MIN
nbl_list = [recommend_nbins_1d_for_angle(angle_matrix[:, i]) for i in range(D)]
nbl = int(np.median(nbl_list))

2D per-axis bins from target occupancy; clamp and keep leq nbl

nb2_from_occup = int(np.floor(np.sqrt(N / TARGET_2D_COUNTS_PER_CELL))) if N > TARGET_2D_COUNTS_PER_CELL else NB2_MIN

nb2 = int(np.clip(nb2_from_occup, NB2_MIN, NB2_MAX))

S 16

nb2 = min(nb2, nbl)

return nbl, nb2

MAIN PIPELINE

build_angles_for_selection(traj, start_resseq, end_resseq):
top = traj.topology

heavy_idx = select_glycan_heavy(top, start_resseq, end_resseq)
res_list = residues_in_selection_order(top, heavy_idx)
conn_pairs = parse_connectivity (CONNECTIVITY_TEXT, res_list)
adj, ring_b = build_adjacency(top, heavy_idx, conn_pairs)
diheds = enumerate_dihedrals(adj, ring_b)

if not diheds:

raise RuntimeError(f"No torsions found in selection {start_resseq}-{end_resseq}. Check connectivity.")

dih_idx = np.array(diheds, dtype=int)
angles = md.compute_dihedrals(traj, dih_idx) # (N_frames, N_dihedrals)

return angles, diheds

main() :
pdb_path = PDB_PATH if len(sys.argv) < 2 else sys.argv[i]

traj = load_traj_pdb(pdb_path)

selections = [(s, s + SELECTION_LENGTH - 1) for s in STARTING_RESIDUES]
recos = []
for k, (rs, re) in enumerate(selections, 1)
try:
A, diheds = build_angles_for_selection(traj, rs, re)
nbl, nb2 = recommend_global_bins(A)
print(£"[sel {k:02d} | {rs}-{re}] frames={A.shape[0]} diheds={A.shape[1]}
recos.append((rs, re, A.shape[0], A.shape[1], nbl, nb2))
except Exception as e:

print(f"[sel {k:02d} | {rs}-{re}] ERROR: {e}")

Aggregate recommendation across selections
if recos:
nbi_all = [r[4] for r in recos]
nb2_all = [r[56] for r in recos]
nbl_global = int(np.median(nbl_all))
nb2_global = int(np.median(nb2_all))
print ("\nRecommended global bins (use the SAME for both systems):")
print(f"nbins_1d = {nbl_globall}")

print(f"nbins_2d = {nb2_globall}")

summary = {
"pdb_path": pdb_path,
"target_1d_avg_counts": TARGET_1D_COUNTS_PER_BIN,
"target_2d_avg_counts": TARGET_2D_COUNTS_PER_CELL,
"per_selection": [
{"start": r[0], "end": r[1], "frames": r[2], "n_dihedrals": r[3],
"nbins_1d": r[4], "nbins_2d": r[5]} for r in recos
1,
"global": {"nbins_1d": nbl_global, "nbins_2d": nb2_globa1}
}
with open(f"{OUT_PREFIX}_bins_summary.json", "w") as f:
json.dump (summary, f, indent=2)

print (f"\nWrote {OUT_PREFIX}_bins_summary.json")

S 17

nbins_1d={nb1}

nbins_2d={nb2}")

if __name__

main()

compute_entropy_N180.py

#!/usr/bin/
-x- codin,

nun

Torsional configurational entropy with MIST for an attached glycan.

Inputs:

== "__main__":

env python3

g: utf-8 —*-

- Multi-model PDB trajectory

- CONNECTIVITY_TEXT: inter-residue bonds, e.g.

Outputs:

- S (nats and S/kB), dihedral table CSV, MST CSV, summary JSON

- deltaG_300K [kcal/mol] = -0.593 * (deltaS/kB)

Requires: m

import re,
import nump;

import mdtr:

dtraj, numpy

json
y as np

aj as md

#

OUT_PREFIX = "glycan_torsion_entropy_repl"

CONNECTIVIT
bond 1.06
bond 1.04
bond 2.04
bond 3.06
bond 3.03
bond 8.06
bond 8.02
bond 12.04
bond 13.03
bond 14.04
bond 14.03
bond 15.03
bond 9.04
bond 10.06
bond 4.02
bond 5.04
bond 6.06

.stripQ)

#

Y_TEXT = """
18.C1
2.C1

3.C1

8.C1
4.C1
12.C1
9.C1
13.C1
14.C1
15.C1
17.C1
16.C2
10.C1
11.C2
5.C1
6.C1

7.C2

USER INPUT

def _to_index_set(idx_like):

"""Flatten any nested iterable of indices into a set of ints."""

out = [

def add

]
(x):

UTILS

S 18

if isinstance(x, (int, np.integer)):
out.append (int (x))
elif isinstance(x, (list, tuple, set, np.ndarray)):
for y in x:
add (y)
else:
try:
out .append (int (x))
except Exception:
pass
add (idx_like)

return set(out)

def

SELECTION

load_traj_pdb(pdb_path):
t = md.load_pdb(pdb_path)
if t.n_frames < 1:
raise ValueError("No frames in PDB.")

return t

select_glycan_heavy(top, start_resseq, end_resseq):
sel = top.select(f"(resSeq {start_resseq} to {end_resseq}) and not element H")
if sel.size ==

raise ValueError("Selection empty; check RESSEQ_RANGE and elements.")

return sel

residues_in_selection_order(top, heavy_idx):

heavy = _to_index_set (heavy_idx)

res_list = []

seen = set()

for r in top.residues:

if any(a.index in heavy for a in r.atoms):
if r.index not in seen:

seen.add(r.index)
res_list.append(r)

return res_list # ordinals 1..N in topology order

CONNECTIVITY
parse_connectivity(text, res_list):
wn

Parse ’bond X.Y U.V’ where X,U are residue ordinals (1-based within res_list),
and Y,V are atom names within those residues.

Returns list of atom-index pairs (i,j).

wn

edges = 0

line_re = re.compile(r" \s*bond\s+(\S+)\s+(\S+)\s*$", re.IGNORECASE)

def parse_token(tok):
token like ’1.06’ or ’18.C1’
parts = tok.split(".")
if len(parts) != 2:
raise ValueError(f"Bad token: ’{tok}’ (expected ’ord.atom’)")
res_ord = int(parts[0])
atom_name = parts[1].strip()
if not (1 <= res_ord <= len(res_list)):

raise ValueError(f"Residue ordinal {res_ord} out of range [1..{len(res_list)}]")

S 19

res = res_list[res_ord - 1]
exact name match, then case-insensitive fallback
idx = None
for a in res.atoms:
if a.name.strip(== atom_name:
idx = a.index; break
if idx is Nome:
atom_name_u = atom_name.upper ()
for a in res.atoms:
if a.name.strip().upper() == atom_name_u:
idx = a.index; break
if idx is None:
raise ValueError(f"Atom ’{atom_name}’ not found in residue ordinal {res_ord} ({res.name} {res.resSeq})")

return idx

for line in text.splitlines():
line = line.strip()
if not line or line.startswith("#"):
continue
m = line_re.match(line)
if not m:
raise ValueError(f"Unrecognized connectivity line: ’{line}’")
t1, t2 = m.group(1), m.group(2)
i = parse_token(t1)
j = parse_token(t2)

if i '= j:

edges.append ((min(i, j), max(i, j)))

return edges

def

INTRA-RESIDUE BONDS
ring_bonds_by_names(top, allowed_idx):
Intra-residue ring bonds by atom names.
Residue != ’0SA’: ring atoms {C1,C2,C3,C4,C5,05} with bonds:
C1-05, 05-C5, C5-C4, C4-C3, C3-C2, C2-C1
Residue == ’0SA’: ring atoms {C2,C3,C4,C5,C6,06} with bonds:
C2-06, 06-C6, C6-C5, C5-C4, C4-C3, C3-C2
Returns set of frozenset({i,j}) restricted to allowed_idx.
allowed = _to_index_set(allowed_idx)
ring_pairs_default = [("C1","05"),("05","C5"),("C5","C4"),("C4","C3"),("C3","C2"),("C2","C1")]
ring_pairs_O0SA = [(*c2","06"),("06","C6"),("C6","C5"), ("C5","C4"), ("C4","C3"), ("C3","C2")]
ring_bonds = set()
res_ids = set(md.Topology.atom(top, i).residue.index for i in allowed)
for ridx in res_ids:
res = list(top.residues) [ridx]
names_to_idx = {a.name.strip(): a.index
for a in res.atoms
if a.index in allowed and (a.element is None or a.element.symbol != "H")}
pairs = ring_pairs_O0SA if res.name.strip() == "OSA" else ring_pairs_default
for nl, n2 in pairs:
if nl in names_to_idx and n2 in names_to_idx:
i, j = names_to_idx[n1], names_to_idx[n2]
ring_bonds.add(frozenset ((i, j)))

return ring_bonds

S 20

def exocyclic_heavy_bonds_by_names(top, allowed_idx):
wn
Minimal intra-residue heavy bonds for torsions.
Default: C5-C6, C6-06, C4-04, C3-03, C2-02, C1-01 (if present)
0SA : C2-C1, C1-01, C4-04, C3-03, C5-05 (if present)
wn
allowed = _to_index_set(allowed_idx)
bonds = set()
res_ids = set(md.Topology.atom(top, i).residue.index for i in allowed)
for ridx in res_ids:
res = list(top.residues) [ridx]
nm = res.name.strip()
names_to_idx = {a.name.strip(): a.index
for a in res.atoms
if a.index in allowed and (a.element is None or a.element.symbol != "H")}
pairs = [("C4","04"),("C3","03")] # common subset
if nm == "0SA":
pairs += [("C2","C1"),("C1","01"),("C5","05")]
else:
pairs += [("C5","C6"),("C6","06"),("C2","02"),("C1","01")]
for nl, n2 in pairs:
if nl in names_to_idx and n2 in names_to_idx:
i, j = names_to_idx[n1], names_to_idx[n2]
bonds.add(frozenset ((i, j)))

return bonds

GRAPH + DIHEDRALS
def build_adjacency(top, heavy_idx, connectivity_pairs):
wun
Undirected adjacency among heavy atoms:
- ring bonds (for neighbors, but excluded as central bonds),
- minimal exocyclic heavy bonds,
- user-specified inter-residue linkages.
wun
heavy = _to_index_set (heavy_idx)

adj = {i: set() for i in heavy}

ring_b = ring_bonds_by_names(top, heavy)

exo_b = exocyclic_heavy_bonds_by_names(top, heavy)

def add_edge(i, j):
if i in adj and j in adj:
adj[il.add(j); adj[j].add(i)
for e in ring b | exo_b:
i, j = tuple(e)

add_edge (i, j)

for (i, j) in connectivity_pairs:

add_edge(i, j)
return adj, ring_b
def enumerate_dihedrals(adj, ring_bonds):

"""All a-b-c-d with b-c in adj, excluding ring bonds as central."""

dihed = set()

S 21

for b, nbrs in adj.items():
for c¢ in nbrs:
if b >= c:
continue
if frozenset((b, c)) in ring_bonds:
continue
As = [x for x in adj[b] if x != c]
Ds = [x for x in adjlc] if x != b]
if not As or not Ds:
continue
for a in As:
for d in Ds:
if a==d or a==>bor d ==
continue
dihed.add((int(a), int(b), int(c), int(d)))

return sorted(dihed)

ENTROPY + MIST

def entropy_ld_circular(angles, nbins=72):
N = int(angles.size)
if N < 2:
return 0.0
counts, _ = np.histogram(angles, bins=nbins, range=(-np.pi, np.pi))
nz = counts[counts > 0]
if nz.size ==
return 0.0
p = nz.astype(np.float64) / float(N)
H = -np.sum(p * np.log(p))
K = int(nz.size)
H+= (K - 1) / (2.0 * N) # MillerMadow

return float (H)

def entropy_2d_torus(al, a2, nbins=36):
if al.size != a2.size:
raise ValueError("Angle arrays must have same length.")
N = int(al.size)
if N < 2:
return 0.0
counts, _, _ = np.histogram2d(al, a2, bins=nbins,
range=[(-np.pi, np.pi), (-np.pi, np.pi)l)
nz = counts[counts > 0]
if nz.size ==
return 0.0
p = nz.astype(np.float64) / float(N)
H = -np.sum(p * np.log(p))
K = int(nz.size)
H+= (K-1) /(2.0 x)

return float (H)

def mutual_information_torus(al, a2, nbins_1d=72, nbins_2d=36):
H1 = entropy_1id_circular(al, nbins_1d)
H2 = entropy_1id_circular(a2, nbins_1d)
H12 = entropy_2d_torus(al, a2, nbins_2d)
I =H1 + H2 - H12

return float(max(0.0, I))

S 22

def maximum_information_spanning_tree(I):
n = int(I.shape[0])
if n ==
return []
sel = np.zeros(n, dtype=bool); sell[0] = True
edges = []
for _ in range(n - 1):
si = np.where(sel) [0]; ui = np.where("sel) [0]
if ui.size ==
break
best_w, best_u, best_v = -1.0, -1, -1
for u in si:
row = I[u, uil
j = int(np.argmax(row))
w = float(row[jl)
if w > best_w:
best_w, best_u, best_v = w, u, int(uil[jl)
if best_u < 0:
best_u, best_v = int(si[0]), int(uil0])
sel[best_v] = True
edges.append ((min(best_u, best_v), max(best_u, best_v)))

return edges

PIPELINE

def torsion_entropy_MIST(pdb_path, resseq_range, out_prefix,
nbins_1d=72, nbins_2d=36, connectivity_text=""):
traj = load_traj_pdb(pdb_path)
top = traj.topology
heavy_idx = select_glycan_heavy(top, resseq_range[0], resseq_range[1])

res_list = residues_in_selection_order(top, heavy_idx)

Build adjacency graph
conn_pairs = parse_connectivity(connectivity_text, res_list)

adj, ring_b = build_adjacency(top, heavy_idx, conn_pairs)

Dihedrals and angles
diheds = enumerate_dihedrals(adj, ring_b)
if not diheds:
raise RuntimeError("No rotatable heavy-atom dihedrals from provided connectivity.")
dih_idx = np.array(diheds, dtype=int)

angles = md.compute_dihedrals(traj, dih_idx) # (n_frames, n_dihedrals)

nF, nD = angles.shape

H = np.array([entropy_ld_circular(angles[:, i], nbins_1d) for i in range(nD)], dtype=float)

I = np.zeros((nD, nD), dtype=float)
for i in range(nD):
ai = angles[:, il
for j in range(i + 1, nD):
Iij = mutual_information_torus(ai, angles[:, j], nbins_1d, nbins_2d)

I[i, j1 = Iij; I[j, il = Iij

mst_edges = maximum_information_spanning_tree(I)
sum_H = float(np.sum(H))
sum_I_tree = float(np.sum([I[u, v] for (u, v) in mst_edges])) if mst_edges else 0.0

S_nats = sum_H - sum_I_tree

S 23

#

if

S_over_kB = S_nats # natural logs numeric equality

Outputs
rows = []

for k, (a, b, ¢, d) in enumerate(diheds):

aa, bb, cc, dd = top.atom(a), top.atom(b), top.atom(c), top.atom(d)

rows.append ([
k, a, aa.name, aa.residue.name, aa.residue.resSeq,
b, bb.name, bb.residue.name, bb.residue.resSeq,
c, cc.name, cc.residue.name, cc.residue.resSeq,
d, dd.name, dd.residue.name, dd.residue.resSeq,
H[k]
D
header = ["idx",
"a_idx","a_name","a_resn","a_resSeq",
"b_idx","b_name","b_resn","b_resSeq",
"c_idx","c_name","c_resn","c_resSeq",
"d_idx","d_name","d_resn","d_resSeq",

"H_i_nats"]

np.savetxt (f"{out_prefix}_dihedrals.csv", np.array(rows, dtype=object),

fmt="%s", delimiter=",", header=","

mst_rows = [[u, v, I[u, vl] for (u, v) in mst_edges]

.join(header), comments="")

np.savetxt (f"{out_prefix}_MST_edges.csv", np.array(mst_rows, dtype=object),

fmt="%s", delimiter=",", header="u_idx,v_idx,I_uv_nats",

summary = dict(
pdb_path=pdb_path,
resseq_start=int (resseq_range[0]),
resseq_end=int (resseq_range([1]),
n_frames=int (nF),
n_dihedrals=int(aD),
nbins_id=int(nbins_1d),
nbins_2d=int (nbins_2d),
S_nats=float(S_nats),
S_over_kB=float (S_over_kB),

kBT_300K_kcal=0.593,

comments="")

note="Compute per system. deltaG_300K [kcal/mol] = -0.593 * (deltaS/kB)."

)
with open(f"{out_prefix}_summary.json", "w") as f:

json.dump(summary, f, indent=2)

return dict(S_nats=S_nats, S_over_kB=S_over_kB,
N_frames=nF, N_dihedrals=nD,

dihedrals=diheds, H=H, I=I, mst_edges=mst_edges)

__name__ ==

MAIN

_main__":

import sys
if len(sys.argv) < 2:
print("Usage: python compute_entropy.py <PDB_PATH>")

sys.exit(1)

PDB_PATH = sys.argv[1]

S 24

Example configuration: adjust these as needed
STARTING_RESIDUES = [1765,1747,1729,1711,1693,1675,1657,1639,1621,1783,1603,1585]
SELECTION_LENGTH = 18 # number of residues per selection

OUT_PREFIX = "glycan_entropy_N180"

all_results = []

for i, start_resseq in enumerate(STARTING_RESIDUES):
end_resseq = start_resseq + SELECTION_LENGTH - 1

out_prefix_i = f"{OUT_PREFIX}_sel{i+1}_{start_resseq}_{end_resseq}"

print (f"\nProcessing selection {i+1}: resSeq {start_resseq} to {end_resseq}")
try:
result = torsion_entropy MIST(
pdb_path=PDB_PATH,
resseq_range=(start_resseq, end_resseq),
out_prefix=out_prefix_i,
nbins_1d=15,
nbins_2d=12,
connectivity_text=CONNECTIVITY_TEXT
)
S = result[’S_over_kB’]
deltaG = -0.593 * S
all_results.append((start_resseq, end_resseq, S, deltaG))
print(f" S/kB : {S:.6£}")
print(f" deltaG_300K : {deltaG:.6f} kcal/mol")
except Exception as e:

print(f" Error in selection {start_resseq}-{end_resseq}: {e}")

if all_results:
Ss = [r[2] for r in all_results]
Gs = [r[3] for r in all_results]
mean_S = np.mean(Ss)
std_S = np.std(Ss)
mean_G = np.mean(Gs)

std_G = np.std(Gs)

print ("\n: Summary of All Selections =)
print(f"{’Start’:>6} {’End’:>6} {’S/kB’:>10} {’deltaG_300K’:>12}")
for start, end, S, G in all_results:

print (f"{start:6} {end:6} {S:10.6f} {G:12.6£}")

print (" ")
print (£"{’MEAN’:>6} {’’:6} {mean_S:10.6f} {mean_G:12.6f}")
print (£"{’STD’:>6} {’’:6} {std_S:10.6f} {std_G:12.6f}")

3 Sample NCIPLOT4 input

NCIPLOT calculations were run on 30 frames sampled with an even stride from the 1.5 us

MD simulations of RML and MET fibrils glycosylated with sialylated glycans. For each frame,

S 25

we ran an independent NCIPLOT calculation and plotted all s vs sign(Ay)p collectively (plots

in Figure 4 of the main text). A sample input is shown below.

2

fragl.xyz

frag2.xyz

CG2FG 4 8 4 2 1
INCREMENTS 0.5 0.5 0.5
INTERMOLECULAR

OUTPUT 1

4 Sample script for strand reordering

Owing to diffusion, wrapping of fibril coordinates into the primary simulation box (iwrap=1
in Amber) can lead to a change of the ordering of the strands along the simulation. Prior to
analysis, strands are reordered using the following script.

import glob

from math import sqrt

from Bio.PDB import PDBParser, PDBIO, Chain, Atom
import os

import sys

from shutil import move, rmtree

import natsort

def split_pdb_into_frames(input_pdb, output_directory):
if not os.path.exists(output_directory):

os.makedirs (output_directory)

with open(input_pdb, ’r’) as pdb_file:
frame_lines = []

frame_count = 0

for line in pdb_file:

if line.startswith(’MODEL’):
frame_lines = [line]
frame_count += 1

elif line.startswith(’ENDMDL’):
frame_lines.append(line)
output_file = os.path.join(output_directory, f’frame_{frame_count}.pdb’)
with open(output_file, ’w’) as frame_file:

frame_file.writelines(frame_lines)

frame_lines = []

else:

S 26

if frame_lines:

frame_lines.append(line)
print(£"Split {frame_count} frames into individual PDB files in {output_directoryl}.")

def find_seventh_ca_line_index(pdb_content):
ca_count = 0
for index, line in enumerate(pdb_content.splitlines()):
if line.startswith("ATOM") and " CA " in line[12:16]:
ca_count += 1
if ca_count ==
return index
return None
def extract_chains_with_glycans_v2(frame_pdb) :
protein_chains = []
glycans = []
chain_lines = []
glycan_lines = []
is_glycan = False

h2o_ofa_counter = 0 # Counter to track "H20 OfA" appearances

with open(frame_pdb, ’r’) as pdb_file:
for line in pdb_file:

if > OXT ’ in line: # End of a protein chain
chain_lines.append(line)
protein_chains.append("".join(chain_lines))
chain_lines = []

elif > UYB ’ in line and > C1 ’ in line: # Start of a glycan
is_glycan = True
glycan_lines = [line]
h20_ofa_counter = 0 # Reset counter

elif is_glycan:

glycan_lines.append(line)

Detect "H20 OfA" and count occurrences
if ’ H20 ’ in line and ’ 0fA ’ in line:

h2o_ofa_counter += 1

End glycan when "H20 OfA" appears twice
if h2o_ofa_counter == 2:
glycans.append("".join(glycan_lines))
glycan_lines = []
is_glycan = False
else:

chain_lines.append(line)

if glycan_lines: # Ensure last glycan is saved

glycans.append("".join(glycan_lines))

Associate glycans with protein chains
combined_chains = []
for protein_chain in protein_chains:
nln_lines = [line for line in protein_chain.splitlines() if ’> NLN ’ in line and ’ ND2 ’ in line]

num_glycans_needed = len(nln_lines)

if num_glycans_needed ==

S 27

def

combined_chains.append(protein_chain)

continue
nd2_coords_list = [list(map(float, line[30:54].split())) for line in nln_lines]

assigned_glycans = []

used_glycans = set()

for nd2_coords in nd2_coords_list:
min_distance = float(’inf’)

best_glycan = None

for i, glycan in enumerate(glycans):
if i in used_glycans:

continue

cl_lines = [line for line in glycan.splitlines() if ’> UYB ’ in line and ’ C1 ’ in line]
for cl_line in c1_lines:
cl_coords = list(map(float, c1_line[30:54].split()))

distance = sqrt(sum((a - b) ** 2 for a, b in zip(nd2_coords, ci_coords)))

if distance < min_distance:
min_distance = distance
best_glycan = glycan

best_glycan_index = i

if best_glycan:
assigned_glycans.append(best_glycan)

used_glycans.add (best_glycan_index)
combined_chains.append(protein_chain + "\n" + "\n".join(assigned_glycans))

return combined_chains

trim_chains_to_atom_info(chains):

return ["\n".join(line[:30] for line in chain.splitlines() if line.startswith("ATOM")) for chain in chains]

trim_chains_to_coordinates(chains):

return ["\n".join(1ine[30:] for line in chain.splitlines() if line.startswith("ATOM")) for chain in chains]

reorder_trimmed_coordinates_by_z(trimmed_coordinates, line_index):
def extract_z_coordinate(chain):
try:
lines = chain.splitlines()
return float(lines[line_index].split()[2])
except (IndexError, ValueError):

return float(’inf’)

indexed_coords = list(enumerate(trimmed_coordinates))

indexed_coords.sort (key=lambda x: extract_z_coordinate(x[1]))

sorted_coordinates = [coord for _, coord in indexed_coords]

order_mapping = [index for index, _ in indexed_coords]

return sorted_coordinates, order_mapping

S 28

def combine_atom_info_and_coordinates(atom_info, reordered_coordinates, order_mapping):
if len(atom_info) != len(reordered_coordinates):

raise ValueError("Atom info and reordered coordinates must have the same number of elements.")

reordered_atom_info = [atom_info[i] for i in order_mapping]

combined = []
for atom_block, coord_block in zip(reordered_atom_info, reordered_coordinates):
atom_lines = atom_block.splitlines()

coord_lines = coord_block.splitlines()

if len(atom_lines) != len(coord_lines):

raise ValueError("Mismatch in the number of lines between atom info and coordinates for a chain.")

combined_block = "\n".join(f"{atom}{coord}" for atom, coord in zip(atom_lines, coord_lines))

combined.append (combined_block)

return combined

def merge_files_with_custom_joiner(file_names, output_file, joiner):
with open(output_file, ’w’) as out_file:
for i, file_name in enumerate(file_names):
with open(file_name, ’r’) as in_file:
content = in_file.read()
out_file.write(content)

if i < len(file_names) -

out_file.write(joiner)
print (f"Merged {len(file_names)} files into {output_file}.")

pdb_file = sys.argv[1]

stride = int(sys.argv[2])

split_pdb_into_frames(pdb_file, "pieces")

frames = natsort.natsorted(glob.glob("pieces/*pdb"))
written_frames = []

for frame_number, frame in enumerate(frames, start=1):
if "reordered" not in frame:
combined_chains = extract_chains_with_glycans_v2(frame)
atom_info = trim_chains_to_atom_info(combined_chains)

coords = trim_chains_to_coordinates(combined_chains)

if combined_chains:
index_for_reorder = find_seventh_ca_line_index(combined_chains[0])
if index_for_reorder is not None:
reordered_coords, order_mapping = reorder_trimmed_coordinates_by_z(coords, index_for_reorder)
reordered_contents = combine_atom_info_and_coordinates(atom_info, reordered_coords, crder_mapping)
else:
reordered_contents = combine_atom_info_and_coordinates(atom_info, coords, list(range(len(coords))))
else:

reordered_contents = []

if frame_number % stride ==

S 29

output_frame = frame.replace("frame", "reordered_frame")

written_frames.append(output_frame)

with open(output_frame, "w") as g:
g.write(f"MODEL {frame_number}\n")
g.write("\nTER\n". join(reordered_contents))

g.write("\nENDMDL\n")

to_merge = natsort.natsorted(written_frames)
merge_files_with_custom_joiner(to_merge, pdb_file.replace(".pdb", f"_reordered_stride_{stride}.pdb"), "")

rmtree ("pieces")

5 Sample script for Ca RMSEF calculation

The following script was used to compute per-residue Ca Root-Mean-Square Fluctuation

(RMSF) values.

import numpy as np
import sys
import re

from collections import defaultdict

def compute_alpha_carbon_rmsf (pdb_file, output_file):
Initialize data structures
residue_positions = defaultdict(list)

residue_numbers = set()

with open(pdb_file, ’r’) as file:
current_frame = []
for line in file:
if line.startswith("MODEL"):
current_frame = [] # Start a new frame
elif line.startswith("ATOM") and line[13:15] == "CA":
print(line)
Extract residue number and coordinates
residue_number = int(line[22:26].strip())
x = float(1ine[30:38].strip())
y = float(1ine[38:46].strip())
z = float(line[46:54].strip())
residue_positions[residue_number] .append(np.array([x, y, z1))
residue_numbers.add(residue_number)
elif line.startswith("ENDMDL"):
End of the current frame

pass

Sort residue numbers for consistent output

#residue_numbers = sorted(residue_numbers)

Compute RMSF

S 30

rmsf_values = {}
for residue_number in residue_numbers:
positions = np.array(residue_positions[residue_number])
mean_position = np.mean(positions, axis=0)
squared_displacements = np.sum((positions - mean_position) ** 2, axis=1)

rmsf_values[residue_number] = np.sqrt(np.mean(squared_displacements))

Write RMSF to output file
with open(output_file, ’w’) as out_file:
for residue_number in residue_numbers:

out_file.write(f"{residue_number:.3f}\t{rmsf_values[residue_number]:.4f}\n")
print (f"RMSF values have been saved to {output_file}.")

Example usage
pdb_file = sys.argv[1] # Replace with your PDB file path
output_file = pdb_file.replace(".pdb", "")+"_alpha_carbon_rmsf.txt" # Output file

compute_alpha_carbon_rmsf (pdb_file, output_file)

6 Sample script for glycans RMSF calculation

The following script was used to compute per-carbohydrate unit C1 RMSF values.

import numpy as np
import sys
import re

from collections import defaultdict

def compute_alpha_carbon_rmsf(pdb_file, output_file):
Initialize data structures
residue_positions = defaultdict(list)

residue_numbers = set()

with open(pdb_file, ’r’) as file:
current_frame = []
for line in file:
if line.startswith("MODEL"):
current_frame = [] # Start a new frame
elif line.startswith("ATOM") and line.strip()[17:20] \
[’0fA’, ’VMB’, ’4YB’, ’0SA’, ’WYB’, ’3LB’, ’XMA’, ’6LB’, ’UYB’, ’2MA’] and line.strip() [12:16].strip() == "C1":
print(line)
Extract residue number and coordinates
residue_number = int(line[22:26].strip())

x = float(1ine[30:38].strip())

y = float(line[38:46].strip())
z = float(line[46:54] .strip())
residue_positions[residue_number].append(np.array([x, y, z1))
residue_numbers.add(residue_number)

elif line.startswith("ENDMDL"):

End of the current frame

pass

S 31

Sort residue numbers for consistent output

#residue_numbers = sorted(residue_numbers)

Compute RMSF
rmsf_values = {}
for residue_number in residue_numbers:
positions = np.array(residue_positions[residue_number])
mean_position = np.mean(positions, axis=0)
squared_displacements = np.sum((positions - mean_position) ** 2, axis=1)

rmsf_values[residue_number] = np.sqrt(np.mean(squared_displacements))

Write RMSF to output file
with open(output_file, ’w’) as out_file:
for residue_number in residue_numbers:

out_file.write(f"{residue_number: .3f}\t{rmsf_values[residue_number]:.4f}\n")
print (f"RMSF values have been saved to {output_file}.")

Example usage
pdb_file = sys.argv[1] # Replace with your PDB file path
output_file = pdb_file.replace(".pdb", "")+"_carbos_rmsf.txt" # Output file

compute_alpha_carbon_rmsf (pdb_file, output_file)

7 Sample script for per-residue SASA analysis

The following script was used to compute per-residue Solvent Accessible Surface Area (SASA)
values.

#!/usr/bin/env python3

import argparse, os, tempfile

from collections import defaultdict
from typing import List, Dict
import pandas as pd

import freesasa

def split_models(pdb_path: str) -> List[str]:
models, current = [], []
with open(pdb_path) as f:
for line in f:
rec = line[0:6].strip() .upper ()
if rec == "MODEL":
if current:
models.append("".join(current))
current = []
elif rec == "ENDMDL":
if current:
models.append("". join(current))
current = []
else:
current.append(line)
if current:

models.append("". join(current))

S 32

if not models:
with open(pdb_path) as f:
models = ["".join(f.readlines())]

return models

def sanitize_pdb_block(pdb_text: str) -> str:
"niKeep only properly formatted ATOM/HETATM lines"""
lines = []
for 1 in pdb_text.splitlines():
if 1[0:6].strip().upper() in ("ATOM", "HETATM"):
lines.append (1)

return "\n".join(lines) + "\n" if lines else ""

def sasa_per_residue_for_frame(pdb_text: str) -> List[Dict]:
pdb_text = sanitize_pdb_block(pdb_text)
if not pdb_text.strip():

return []1 # empty model, skip

with tempfile.NamedTemporaryFile(delete=False, suffix=".pdb", mode="w") as tmp:
tmp.write (pdb_text)

tmp_name = tmp.name

try:
structure = freesasa.Structure(tmp_name)
result = freesasa.calc(structure)
finally:

try:
os.remove (tmp_name)
except OSError:

pass

per_res = defaultdict(float)
for i in range(structure.nAtoms()):
per_res[
(
structure.chainLabel(i).strip(),
structure.residueNumber(i).strip(),
structure.residueName (i) .strip(),
)

1 += float(result.atomArea(i))

return [
{
"Chain": c,
"Residue_ID": r,
"Residue_Name": rn,
"SASA("2)": area,
}

for (c, r, rn), area in per_res.items()

def main():

ap = argparse.ArgumentParser ()

S 33

ap.add_argument ("-i", "--pdb", required=True)
ap.add_argument ("-o", "--out-per-frame", default="sasa_per_residue.csv")
ap.add_argument ("-a", "--out-average", default="sasa_per_residue_average.csv")

args = ap.parse_args()

models = split_models(args.pdb)

all_rows = []

for idx, m in enumerate(models, 1)
rows = sasa_per_residue_for_frame(m)
if not rows:
print (£"Skipping empty frame {idx}")
continue
for r in rows:
r["Frame"] = idx

all_rows.extend(rows)

if not all_rows:

raise RuntimeError("No valid frames contained ATOM/HETATM records")

df = pd.DataFrame(all_rows)

df .to_csv(args.out_per_frame, index=False)

df_mean = (
df .groupby(["Chain", "Residue_ID", "Residue_Name"], as_index=False) ["SASA("2)"]
.mean ()
.rename (columns={"SASA("2)": "Mean_SASA("2)"})

)

df_meaDAto_csv(args.out_average, index=False)

if __name__ == "__main__":

main()

8 Sample script for inter-strand Ca distances

Ca distances between equivalent residues on consecutive strands of the fibril were computed
using the following script.

#!/usr/bin/env python3

nan

Compute interchain CC distances for each MODEL of a multimodel PDB.

Modifications
* Robust chain splitting: every line whose record name (columns 16) is TER
triggers a new chain. Duplicate TER lines never generate empty chains.

* Stricter validation and exhaustively documented, PEP484typed code.

S 34

from __future__ import annotations

import sys
from pathlib import Path

from typing import List

import numpy as np

BUFFER_RES: int = 0 # residues to ignore at each terminus (flexible ends)

def read_pdb_frames(pdb_path: str) -> List[str]:
"""Return each MODELENDMDL block as a raw string."""
frames: List[str] = []

current: list[str] = []

with Path(pdb_path).open() as fh:
for line in fh:
if line.startswith("MODEL"):
current = []
current.append(line.rstrip("\n"))
if line.startswith("ENDMDL"):

frames.append("\n". join(current))

return frames

def split_chains(frame: str) -> List[str]:

Partition *frame* into individual chains.

A chain ends at any line whose record name (cols 16) equals TER,
irrespective of the remaining content (serial, residue ID,).
Consecutive TER lines are ignored; no empty chains are emitted.

nan

chains, current = [1, []

for line in frame.splitlines():
record = line[:6].strip()
if record == "TER": # chain boundary
if current:
chains.append("\n". join(current))

current = []

continue # discard the TER itself
if record == "ENDMDL": # handled upstream
continue

current.append(line)

if current: # flush final chain

chains.append("\n". join(current))

Quality control identical C count in every chain
ca_counts = [
sum(1 for 1 in c.splitlines()
if 1.startswith("ATOM") and 1[12:16].strip() == "CA")

for ¢ in chains

S 35

]
if len(set(ca_counts)) != 1:
raise ValueError(

f"Inconsistent C counts between chains: {ca_counts}"

return chains

def compute_ca_distances(chains: List[str]) -> np.ndarray:
"""Vectorised CC distances between *adjacent* chains."""
coords_per_chain = []
for chain in chains:
coords = [
(float(1[30:38]), float(1[38:46]), float(1[46:541))
for 1 in chain.splitlines()
if 1.startswith("ATOM") and 1[12:16].strip() == "CA"
1

coords_per_chain.append(np.asarray(coords, dtype=np.float64))

n_residues = coords_per_chain[0].shape[0]
if any(c.shapel[0] != n_residues for c¢ in coords_per_chain):

raise ValueError("Chains do not contain the same number of residues.")

Trim termini
s, e = BUFFER_RES, n_residues - BUFFER_RES

coords_per_chain = [c[s:e] for ¢ in coords_per_chain]

Pairwise distances between successive chains
return np.concatenate ([
np.linalg.norm(coords_per_chain[i] - coords_per_chain[i + 1], axis=1)

for i in range(len(coords_per_chain) - 1)

def main(pdb_path: str) -> None:
frames = read_pdb_frames(pdb_path)
if not frames:

sys.exit("No MODEL/ENDMDL pairs found.")

matrix = np.vstack([
np.concatenate(([idx], compute_ca_distances(split_chains(frame))))

for idx, frame in enumerate(frames, start=1)

D
stem = Path(pdb_path) .stem # file name without .pdb
directory = Path(pdb_path).parent # keep original directory

out_path = directory / f"{stem}_no_border_CA_all_distances.tab"

np.savetxt(out_path, matrix, fmt="%.4f", delimiter="\t")

n_frames, n_pairs = matrix.shape

print(f"Saved {n_frames} frames {n_pairs - 1} distances {out_path.name}")

if __name__ == "__main__":

if len(sys.argv) != 2:

S 36

sys.exit("Usage: python script.py <input.pdb>")

main(sys.argv[1])

S 37

