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Figure S1. Product branching ratios for the reaction of ThH* + O, as a function of kinetic energy
in the laboratory (upper x-axis) and the center-of-mass (lower x-axis).
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Figure S2. Product branching ratios for the reaction of UH" + O, as a function of kinetic energy in
the laboratory (upper x-axis) and the center-of-mass (lower x-axis).
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Figure S3. Product branching ratios for the reaction of ThH* + CO, as a function of kinetic energy
in the laboratory (upper x-axis) and the center-of-mass (lower x-axis).
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Figure S4. Product branching ratios for the reaction of UH* + CO, as a function of kinetic energy
in the laboratory (upper x-axis) and the center-of-mass (lower x-axis).
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Figure S5. The absolute reaction cross section of U>* + CO, as a function of kinetic energy in the
center-of-mass frame. Individual products are UO?*" (blue circles) and UCO?" (green triangles).
The Su-Chesnavich semi-classical trajectory (oy,j) collision limit is represented by a solid black
line.
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Figure S6. The correlation between E(6d%) and the reaction 10 enthalpy calculated
using the values found in Table 4 and equation 17. The solid red line represents the
least square linear regression trend line omitting NpO,* (-1.0 + (1.4 £ 0.1)E(6d?), r* =
0.99). The dotted black line represents the trend including NpO,™, see Figure 5 (-0.5 +
(1.3 +0.3)E,(6d?), 12 = 0.87).
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Figure S7. The correlation between Ep(6d2) and the reaction 10 enthalpy calculated
using the values found in Table 4 and equation 17. The dashed dark blue line represents
the least square linear regression trend line for PaO," - NpO,* (-3.7+ (6 + 1)Ep(6d?),
r2 = 0.95). The solid blue line represents the least square linear regression trend line
for NpO," - AmO," (0.8+ (0.8 + 0.2)Ep(6d?), r2 = 0.95). The dotted black line
represents the trend including NpO,™, see Figure 5 (-0.5 + (1.3 £ 0.3)E,(6d?), r> = 0.87).
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Table S1. Reaction enthalpies (AH’) of reactions listed in Table 2 (in eV).

ATWSTE  AH(S2)Y  AHWS3):  AH((S4)Y  AH(S5)°  AH(S6)
Th -346+0.14 -3.48+0.83 -545+0.16 <-0.34 -5.88+0.16 0.17+0.06
U -277+0.09 -221+047 -4.87+£0.15 <-0.34 -7.99£0.19 -245+0.12
AWSTT AHW(S8)F  AH((S9)  AHWSI0)P AH(SII)  AH(S12)
Th -3.12+£0.14 -3.14+0.83 -248+0.16 <0 2.02+0.16 0.51+0.06
U -243+0.09 -1.87+x047 -1.90£0.15 <0 -0.09£0.19 -2.11+£0.12
a. AHo(S1)=Dy(0-0)=5.11eV' —Dy(An"-0) =8.57 £ 0.14 eV? or 7.88 £ 0.09 eV?
b. AH((S2) =Dy(0-0)=5.11 eV! — Dy(An?*-0)* = 8.59 £ 0.83 eV or 7.32 £ 0.47 eV
c. See Table 4
d. AHo(S4) <Dy(0OC-0)=5.45¢V - Dy(0-0)=5.11 eV! =-0.34 eV
e. AHo(S6)=Dy(0-0)=5.11eV!' — Dy(OAn*-0) =4.94 + 0.06 V> or 7.56 + 0.12 eV*
f. AHo(S7) =Dy(0OC-0) =5.45eV! —Dy(An*-0) =8.57 £ 0.14 eV? or 7.88 £ 0.09 V3
g. AHy(S8) =Dy(OC-0)=5.45eV! — Dy(An**-0)*=8.59 £ 0.83 eV or 7.32 £ 0.47 eV
h. Exothermic reactions observed in Figures 3 and 4.
i. AHo(S12)=Dy(OC-0)=5.45eV! —Dy(OAn*-0)=4.94 + 0.06 eV> or 7.56 £ 0.12 eV®

Table S2. Promotion energies, E;(6d") and AnO," BDEs (in e¢V).?

E,(6d) E,6d°) Dy(An-O) Dy(OAn"-O)
Th* 0.00 0.00 857+0.14> 4.87+0.04¢
Pa* 0.10 0.59 8.29 £0.52 8.08 £ 0.30
u* 0.04 0.57 8.02 £ 0.144 7.56 £0.12¢
Np* 0.00 09+04 7.88=+0.10 6.32+0.23
Pu* 1.08 2.14 6.75 £ 0.20 5.28 £0.39
Am* 1.76 3.6+0.2 5.80+0.29 425 +0.58
a. Unless noted otherwise, Ref. 4
b. Ref.?
c. Ref.>
d. Ref.3
e. Ref. ©
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