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Experimental Methods

Materials

Pbl (99.99%), CH3NHsI (MALI 99%), Spiro-TAD (99%), Spiro-TTB (99%), Spiro-OMeTAD
(99%), CF3SO,NLiSO,CF3 (Li-TFSI, 99.95%), 4-tert-butylpyridine (TBP, 98%) were
purchased from Xi’an Polymer Light Technology. N, N-dimethylformamide (DMF, 99.8%),
dimethyl sulfoxide (DMSO, 99.8%), Chlorobenzene (CB, 99.8%), Acetonitrile (ACN, 99.8%),
ferrocene (Fc) were purchased from Sigma-Aldrich. The SnO, solution was purchased from
Alfa Aesar and the I, (99.5%) was purchased from Aladdin. Tetrabutylammonium
hexafluorophosphate (n-BusNPFs)) and dichloromethane (DCM, CH»Cl,) were purchased
from Macklin.

Preparation of samples

The electron transport layer (ETL), perovskite layer and hole transport layer (HTL) were
prepared by the spin coating method. The precursor solution of the ETL is prepared by mixing
SnO> dispersion with deionized water in a volume ratio of 1:5. The 50 uLL ETL precursor
solution was coated on the FTO substrate for 30 seconds at 3000 rpm, and the prepared film
was heated at 180 °C for 30 minutes, and then the ETL layer was obtained. The precursor
solution of MAPDbI; was prepared by adding 461 mg Pbl, and 159 mg MAI into the mixed
solution of 900 uL. DMF and 100 pL. DMSO. The precursor solution of 50 pL MAPbI3 was
coated on the ETL layer at 4000 rpm for 30 seconds, and at the sixth second of rotation, 150
uL CB was added as the antisolvent, and then the prepared film was heated at 100 °C for 10
minutes, and then the perovskite layer was obtained'. For the HTL layer, the powder of 72.3

mg Spiro-OMeTAD (or 64.74 mg Spiro-TTB or 58.12 mg Spiro-TAD) was dissolved in 1mL



CB, 17.5 pL Li-TFSI (520 mg Li-TFSI in 1 mL ACN) and 28.8 uL TBP were added. The 50
pL HTL precursor solution was coated on the perovskite layer at 3000 rpm for 30 seconds. And
then the film was oxidized in dry air at room temperature for about 36 hours. An Au layer with
the thickness of 100 nm was deposited as a top electrode by thermal evaporation.
Characterization of samples

The crystal structure of the samples were measured by X-ray diffractometer (XRD, Rigaku
D/MAX-Ultima III, Cu target Ka radiation source). A scanning electron microscope (SEM,
Zeiss Gemini 500) was used to observe the morphologies of the samples. The absorption band
edges of the samples were obtained by UV-vis absorption spectroscopy (Shimadzu UV 2550).
UV photoelectron spectroscopy (UPS, Thermo fisher Esca lab 250Xi, He [ hv=21.22 eV) was
used to test the work functions and valence band positions of the samples. Fourier Transform
Infrared (FTIR, Shimadzu, IRPrestige-21) spectroscopy was used to measure the chemical
bonding of the samples. The schematic diagram of in situ FTIR measurement is shown in
Figure S1. In the experiments, the samples were simultaneously illuminated by an AM 1.5 solar
simulator and the FTIR source. The FTIR spectra were collected after the samples were
illuminated under AM 1.5 solar simulator for different time (0 minutes, Sminutes, 10minutes,

15 minutes and so on).
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Figure S1. Schematic diagram of in-situ infrared measurement.

The molecular structures of the samples characterized by NMR spectroscopy (Bruker 600" 54
Ascend LH 600MHz)?. The surface morphology and roughness of the sample were
characterized by atomic force microscopy (AFM) which were performed using a Dimension
Icon instrument (Bruker, USA). The hole mobilities of the HTLs were measured by space
charge limited current (SCLC) and current density-voltage (J-V) characteristics were recorded
by a source (Keithley 2400). The electrical conductivity of the samples was performed using
the four-point probe method (RTS-9 dual-configuration four-point probe measurement system)
Theoretical Calculations

Theoretical calculations were performed using Gaussian software. Molecular configurations
were optimized at the B3LYP-D3 (BJ)/def2-TZVP level of theory***. Models were established
for three HTLs and their iodinated derivatives (with hydrogen at the side chain positions

replaced by I»), as well as for I, and hydrogen iodide (HI). The reaction as follow: HTL + 1, —



HTL-I + HI, where HTL-I represents the iodinated derivative of HTL. Gibbs free energy
changes of these reactions were calculated.

Electrochemical measurements

The electrochemical tests in this study were carried out in a standard three-electrode system.
The electrochemical analyzer was a Shanghai Chenhua CHI760e (Shanghai Chenhua). The
electrolyte was 0.1M n-BusNPF¢ in CH,Cl; solution, the sample was the working electrode, a
metal Pt wire was a counter electrode, an Ag wire electrode was used as a pseudo-reference
electrode. All of the potentials relative to the Ag electrode were converted to potentials relative
to ferrocene (Fc), by adding 1 mM ferrocene to the electrolyte and measuring the reaction
potential of ferrocene through a Pt wire. Using ferrocene as an internal standard, the potential
at which this redox pair (Fc/Fc™) occurs was specified as 0 V vs. Fc/Fc™. The vacuum energy
level of Fc/Fc'is -4.9 eV.

Photovoltaic measurements

The photovoltaic performance were measured in a nitrogen-filled glovebox, with the light
intensity calibrated to one standard sun (Enlitech, AM 1.5G, 100 mW/cm?). J-V characteristics
were recorded by a source (Keithley 2400). The device structure used in the SCLC test was

FTO/PEDOT:PSS/HTL/Au.
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Figure S2. J-V curves of the hole-only devices with an architecture of
FTO/PEDOT:PSS/HTL/Au.

Table S1: Th values of hole mobility and conductivity of three HTLs.

Hole mobility Film conductivity
HIL Name (e / V-s) (S/em)
Spiro-OMeTAD 8.10E-3 7.35E-5
Spiro-TTB 6.96E-3 5.76E-5
Spiro-TAD 6.56E-3 4.68E-5

*3 Spita-OMeTAD. o]
' ¥ ‘g“«‘, S A1 263nm R 24.9 nm

@ -24.6 nm -20.4 nm

Height Sensor 2.0um Height Sensor 2.0um
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Figure S3. The AFM images of (a) Spiro-OMeTAD, (b) Spiro-TTB, (¢) Spiro-TAD.
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Figure S4. UPS spectra of (a) MAPbI; and (b) three HTLs.
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Figure S5. UV-vis spectra of (a) MAPbI3, (b)Spiro-OMeTAD, (c)Spiro-TTB, (d)Spiro-

TAD.
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Figure S6. Conduction and valence band position of MAPbI; and the HOMO and
LUMO levels of three kinds of HTLs.
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Figure S7. XRD pattern of MAPbI;.
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Figure S8. SEM image of MAPbI;.
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Figure S9. FTIR of three HTLs.

Figure S10. SEM cross-sectional images of FTO/SnO2/MAPbI3/Spiro-OMeTAD/Au.



Figure S12. SEM cross-sectional images of FTO/SnO,/MAPbI3/Spiro-TAD/Au.
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Figure S13. In situ FTIR of single material under illumination. (a) Spiro-OMeTAD,
(b) Spiro-TTB, (c) Spiro-TAD and (d) MAPbI;.
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Figure S14. '"H NMR spectra of Spiro-TAD powder.
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Figure S15. '"H NMR spectra of Spiro-TAD powder after exposure to I vapor for 10

minutes in the dark.
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Figure S16. '"H NMR spectra of Spiro-TTB powder.
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Figure S17. '"H NMR spectra of Spiro-TTB powder after exposure to I, vapor for 10

minutes in the dark.
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Figure S18. '"H NMR spectra of Spiro-OMeTAD powder.
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Figure S19. '"H NMR spectra of Spiro-OMeTAD powder after exposure to I, vapor

for 10 minutes in the dark.
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Figure S20. Cyclic voltammetry (CV) curve of Pt wire in the electrolyte of 1 mM
ferrocene and 0.1 M n-BusNPF¢ in CHCl, (N2)°.
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Figure S21. CV curve of MAPDI; in the dark. (0.1 M n-BusNPF4 in CH>Cl,, N»)°.
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