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1. Instrumentation 
a. Ultra-low temperature MAS-NMR 

We used a ULT MAS-NMR setup operating from room temperature down to 35 K using helium gas. This 

setup, particularly the temperature control, was described in detail in Ref. 1. In brief, it consists of a 14.1 T 

wide-bore superconducting magnet, a ULT MAS probe with a helium gas recirculation system for helium-

gas cooling and spinning of the sample down to temperatures of 30 K, and a gyrotron using second 

harmonic generation to produce mm-wave entering the ULT MAS probe from the top via a waveguide. The 

HX double resonance probe used is similar in nature to the HC double resonance probe used in Ref. 1, 

except it has additional replaceable capacitors to switch nuclei for X channel tuning. When no additional 

capacitors are used on the X channel, the frequency is tuned to 13C, which is the configuration that was 

used in this work. The system is equipped with a top-loading system for sample exchange that was not 

present in Ref. 1. 

b. Gyrotron System 

The gyrotron system used here was designed and assembled by Bridge12. It comprises several key 

components, including a magnetron-injection gun, an internal cavity, an internal mode converter, an 

output window, and a collector. Prior to the operation, the gyrotron tube underwent high-temperature 

maintenance over several days to reduce gas pressure and enhance operational stability.  

The magnetron-injection gun (MIG) is designed to generate an electron beam at a nominal cathode voltage 

ranging from 21 to 23 kV, with a beam current of up to 160 mA. The output electron beam is directed into 

the internal cavity, which as described in the main text, is configured to support second harmonic 

generation (SHG) in the transverse electric (TE) mode at 395 GHz at a magnetic field of 7.3 T provided by 

a Cryomagnetic Inc. cryogen-free superconducting magnet.  The internal cavity is thermally isolated from 

the cavity containing the MIG and internal mode converter, allowing frequency tuning via temperature 

modulation at approximately 5 MHz/°C, with a Polyscience chiller used to adjust the gyrotron cavity 

temperature between 10 °C and 70 °C. 

The internal mode converter transforms the TE mode produced in the cavity into a Gaussian beam which 

then exits the gyrotron tube through an output window perpendicular to the tube. The output window 

consists of a single disk of Al2O3. The collector, located at the top of the gyrotron tube, dissipates the spent 

electron beam and is cooled by an SMC thermos water-cooled chiller, set to 15°C, to maintain stability and 

prevent overheating during operation. Vacuum maintenance of gyrotron tube is facilitated by an VacIon 

pump from Duniway Stockroom Corp. 

The 7.3T cryogen-free magnet, custom-designed and built by Cryomagnetic Inc., utilizes twisted multiple 

filamentary NbTi wire and operates at 4.2 K. Cooling of the cryogen-free magnet which is achieved through 

the combined use of a Sumitomo F-70 water-cooled compressor and an RDK-408D2 Sumitomo cold head. 

The magnet is energized using a Cryomagnetic Model 4G-100 Superconducting Magnet Power Supply, and 

its temperature is monitored by a Cryomagnetic TM-612 cryogenic temperature monitor with four 

measurement channels. The configuration of the cryogen-free magnet allows for a reduced path length 

from the internal cavity to the output window, enhancing system efficiency. The cavity region is positioned 

inside the 7.3 T magnet, while the electron gun is located within a separate, independently adjustable gun 

coil, allowing for optimization during gyrotron testing. 



 3 

The control system, designed to monitor and control various parameters for the operation of the 395 GHz 

gyrotron, interfaces a Python-based software developed by Bridge12. The software controls operating 

parameters, including the electron beam voltage and current, body current, gun coil voltage and current, 

chiller temperatures, and vacuum levels within the gyrotron tube. The interface features a proportional-

integral-derivative (PID) controller, which stabilizes the electron beam current by adjusting the filament 

current. The control system is powered by a modified 4 kW Spellman X-ray power supply (DF series), which 

provides the necessary high voltage for system operation. Additionally, the two thermos chiller units—one 

dedicated to the cavity and the other to the collector—can be controlled remotely, allowing for precise 

management of the system's thermal environment. 

The activation of the gyrotron tube follows a specific sequence, beginning with the initiation of the 

filament current, followed by the gun coil current, and finally the cathode voltage. The output power and 

frequency of the mm-wave radiation depend on several factors, including the cathode voltage, beam 

current, cavity temperature, and magnetic field strength. These parameters were carefully optimized to 

ensure stable and consistent mm-wave output. During experimental measurements, the cathode voltage 

was set to 23.6 kV, with the beam current maintained at 150 mA by adjusting the filament current to 

approximately 2 A through PID control. The mm-wave frequency is tuned by adjusting the cavity 

temperature, with adjustments ranging from 10°C to 67.5°C. Furthermore, the frequency can be tuned to 

higher values by reducing the cathode voltage to 21.5 kV, as demonstrated in the main text Figure 2.  

c. Room requirements  

The chiller water is provided by a custom-built Haskris Chiller, capable of delivering a flow rate of 64 liters 

per minute to supply water for the four Sumitomo compressors and one SMC chiller. The ULT system 

requires a power supply of 50 A at 208 V. Each of the four compressors requires a 208 V – 50 A output. All 

instruments are backed up by an uninterrupted power supply (UPS). The Sumitomo compressor, Haskris 

Chiller and SMC chiller were located in a separated room, which reduce the noise for user. 

d. Top-loading System 

Recently, a sample exchange capability under low temperatures was added to the probe through a top-

loading system, allowing for more efficient cooling and reduced waiting time for sample exchange. The 

top-loading system includes a control system, a sample catcher, a vacuum buffer tank, a diaphragm dry 

vacuum pump, a rotary valve actuator switch, a transfer line, and an adaptor at the top of the probe outer 

jacket. The interconnection of each component in the top-loading system is illustrated in the 

accompanying diagram and described in Figure S1. 

The outer jacket of the DNP ULT probe is connected to the sample catcher via the transfer line which 

contains a rotary valve actuator. The control system includes a vacuum gauge to monitor the pressure of 

the buffer tank, which is vacuumed by the diaphragm dry vacuum pump. Another vacuum/pressure gauge 

monitors the pressure from the sample catcher to the probe. The top-loading system facilitates successful 

loading of rotors into the probe at 35 K and ejection of rotors out of the probe at 90 K. 



 4 

 

Figure S1: (a) The scheme of top-loading system and (b) the photos of DNP probe with outer jacket, top-loading 

controlling system, sample catcher and diaphragm vacuum pump.  

To insert a new rotor, the DNP probe is first cooled down to 35 K. Then, the rotor is placed into the sample 

catcher. The sample catcher and the transfer line before the gate are purged with the vacuum pump and 

refilled with He gas 15 times. After purging, the gate is opened, and the rotor is inserted into the probe by 

filling it with He gas. After insertion, the gate is immediately closed to avoid exposure to air. Similarly, the 

rotor can be ejected from the probe when the probe is warmed up to 90 K by vacuuming the transfer line 

when the gate is open. The rotor is caught by the sample catcher. 

e. Relation between gyrotron frequency and cavity temperature 

To determine the correlation of the gyrotron cavity temperature with the produced mm-wave frequency, 

the frequency of the mm-wave beam was measured using a frequency measurement system (FMS) by 

Bridge12. The FMS operates by mixing a local oscillator frequency νLO and that of the gyrotron mm-wave 

frequency νmw, such that 𝜈IF = ⌊𝜈mw ± 𝑛𝜈LO⌋,  where n is the harmonic and νIF is the intermediate 

frequency. Because it does not feature a bandpass filter, the FMS displays both the upper and lower side 

band, and all other possible leaked frequencies of the gyrotron from lower stages, if they exist. The FMS 

software can automatically detect and classify the sidebands and provides a unique frequency 

measurement with an accuracy ±1 MHz. The gyrotron frequency was measured by removing a portion of 

the waveguide and placing a mirror approximately 1 m away from the gyrotron cavity output, reflecting at 

a 45o angle, and positioning the frequency measurement system (FMS) 25.4 cm away from the mirror.                 

The power output of the gyrotron was measured using a Scientech power meter, placed approximately 1 

m away from the output window along the waveguide. To determine the actual power, the measured value 

was adjusted by a calibration factor of 2.75. This calibration factor was obtained by a combination of water 

and dry calorimeter to account for the measured (absorbed) power compared to the real power (including 

both absorbed and reflected power). The reflection/absorption of the Scientech calorimeter head 

(ACS5000S) was measured on a Vector Network analyser to determine the correction factor. While the 

gyrotron power is constant at approximately 1 W during cavity temperature tuning, it changes significantly 
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during tuning of any other gyrotron parameters including cathode voltage, beam current, and gyrotron 

magnetic field. 

The relation between the mm-wave frequency and the cavity temperature was found to be approximately 

linear (see Figure S2). However, a closer fit is obtained when using a second order polynomial (see Figures 

2b and S2). We also observed that the relation between the mm-wave frequency and the cavity 

temperature was subject to evolution over time (see Figure S2). In our current setup, the mm-wave 

frequency is measured by replacing a section of the waveguide with a mirror to divert the mm-wave beam 

to a frequency measurement device (see the Methods section). To ensure a sufficient resolution of the 

frequency during the acquisition of DNP profiles, the mm-wave frequency was measured at the beginning 

and the end of each DNP profile, and at several intermediate points (typically every 5°C or 25 MHz). The 

quadratic fit of Figure 2b was found to predict the frequency of the resulting dataset with a root mean 

square error of 2.7 MHz (see Figure S3). While mm-wave frequency fluctuations occur due to sensitivity 

to slight changes in proportional-integral-derivative (PID)-controlled parameters, such as beam current 

and cavity temperature, the fluctuations are minor and do not distort the broad DNP features discussed 

in the later sections. Furthermore, the beam current (and thus indirectly, the output power) was held 

stable to about 0.3 % by the PID controller in the gyrotron control system. Details on the instrumentation 

setup for mm-wave frequency and power measurements are provided in the Methods section and SI 

Section 1e. 

The frequency response of the gyrotron to its cavity temperature was measured twice at different dates 

(on July 18th and September 3rd, 2024), using the measurement device described above. In both cases, the 

temperature of the cavity was stepped from low to high temperature, letting the cavity stabilize during 10 

min before recording the frequency. The two calibration curves yielded slightly different results. Figure S2 

shows that a linear regression fits the first calibration data set well with R2 = 0.9994, with randomly 

dispersed residuals. The calibration second data set is not fit well by the linear regression (R2 = 0.998) and 

the residuals show a clear trend. Adding a quadratic correction makes the fit better R2 = 0.9997, with a 

less pronounced trend of the residuals. 

Because we found that the relation between temperature and frequency was subject to variation over 

time, we recorded the DNP profiles monitoring the frequency at multiple points along the acquisition of 

the profile to be able to correct for possible drifts. During the acquisition of five different DNP profiles, the 

mm-wave frequency was measured at a total of 57 temperatures. We used this data set and compared it 

against the prediction of the calibration curves of Figure S2. Figure S3 shows the deviation between the 

experiment and predicted frequency νexp – νcal, for the 57 measurements and the three calibration curves 

of Figure S2. The root mean square error (RMSE) on the prediction by each calibration (which corresponds 

to the root mean square of the data points on the plot) is shown on each plot. The RMSE of the prediction 

using the quadratic calibration curve obtained from the data set of September 3rd is equal to 2.8 MHz, 

which is about twice smaller than for the two other calibration curves. Furthermore, the deviations for 

this calibration curve does not show a clear trend as they do for the two other curves. We therefore chose 

to use the quadratic calibration curve to compute the frequency in the DNP profile shown in this work. 

The RMSE of 2.8 MHz is the result of the uncertainty on both the gyrotron frequency and the frequency 

measurement. It therefore sets an upper bound for the standard deviation of the mm-wave frequency 

produced by the gyrotron. 
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Figure S2: Linear regression of the frequency vs. temperature data set acquired on July 18th, and linear and quadratic 

regression of the data set acquired on September 3rd. The values a0, a1, and a2 on the plots are the polynomial 

coefficients of the fits where the index indicates the order of the term associated with it. 
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Figure S3: Difference between the measured mm-wave frequency νexp and the frequency calculated νcal using the 

three calibration curves of Figure S2. The measured mm-wave frequencies correspond to a data set of 57 

temperature – frequency pairs obtained during the course of five individual DNP profiles. 

2. Experimental  
a. NMR measurements 
13C NMR spectra were acquired using the Delta v6.0 NMR acquisition and data processing software from 

JEOL. Saturation recovery measurements were performed with the pulse sequence: (tsat) –  – π/2-

detection, where the saturation pulse train uses tsat = (π/2–twait)n  = 10 ms, with  twait = 1 ms,  = 60 s and 

π/2  = 4.5 µs or 7.0 µs with 15 dB or 24 dB attenuation at RT and ULT, respectively, from the full power for 

both saturation and detection. For DNP experiments, continuous wave (CW) mm-wave irradiation was 

applied throughout the pulse sequence, and the data was acquired with two scans at each mm-wave 

frequency. For T1 and TDNP build-up curve measurements, the same saturation-recovery pulse sequence 

was used without and with mm-wave irradiation respectively, and by varying the time interval  from 0.1 

s to 6 h. The spectra were exported as raw FID data from the Delta software and processed using the 

Python DNPLab package v2.1.19.   
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b. EPR measurements 

EPR experiments were performed on a home-built 13.8 T dual DNP/EPR spectrometer equipped with a 

closed-cycle helium cooling system and using a home-built pulse forming unit, an amplifier multiplier chain 

(AMC), and a quasi-optical induction mode bridge, as described elsewhere.2,3 Frequency-swept EPR signals 

were measured using an echo sequence (tp)ϕ1 – τe – (tp)ϕ2 – τe – (detection)ϕd with a 16-step phase cycling 

ϕ1 = [0°4, 90°4, 180°4, 270°4] and ϕ2 = [0°, 90°, 180°, 270°]4 for the two pulses and ϕd = ϕ1 - 2ϕ2 for detection. 

At RT, the pulse length and echo time were tp = 1.6 μs and τe = 0.5 μs, respectively, and the signal was 

averaged over 100 shots with a repetition time of 2 ms. At 35 K, the pulse length and echo time were tp = 

1.8 μs and τe = 0.85 μs, respectively and the signal was recorded with a single shot and a repetition time 

of 1 s. Saturation experiments were performed by adding a pump pulse of length tpump = 10 ms at the same 

frequency as the probe, with a delay τd of 1 μs between the pump and probe blocks. The pulse length and 

echo time τe for each temperature were the same as in the frequency-swept EPR experiments with 50 

averages at RT and a single shot at 35 K and a repetition time of 14 ms and 0.5 s for the RT and 35 K 

experiments respectively.  

The spin counting was performed on a CW X-band Bruker Elexsys E500 spectrometer. 

c. Saturation Recovery T1 and TDNP measurements 

Saturation recovery measurements were acquired for the microdiamond sample presented in the main 

text, using the pulse sequence and parameters described in the Methods sections, for both mm-wave-on 

and -off conditions. T1 and TDNP measurements were processed using the DNPLab Python package of data 

taken from the JEOL Delta software. The FIDs were left-shifted to remove the initial filter signal and Fourier 

transformed using zero-filling to 1226 points. The single 13C NMR signal of diamond was then integrated 

by summing the spectrum intensity on a window of 23 ppm. The signal integrals along time t were fitted 

with a stretched exponential model 

 𝑀(𝑡) = 𝑀∞ − (𝑀∞ − 𝑀0)exp (−(
𝑡

𝑇
)
𝛽

), Eq. S1 

where T and β are build-up time constant (T1 and TDNP, for mm-wave-off and -on measurements, 

respectively) and the stretch factor between 0 and 1, respectively. The average build-up time constant was 

obtained as  

 𝑇av =
𝑇

𝛽
Γ (

1

𝛽
), Eq. S2 

where Γ is the gamma function. 

RT saturation recovery experiments were acquired using 6 kHz MAS both without (Fig. S4a)  and with mm-

wave irradiation at 395.2015 GHz (positive enhancement peak, Fig. S4b) and 395.366 GHz (negative 

enhancement peak, Fig. S4c) to obtain the TDNP
 and T1

 constants, respectively. These curves were 

subsequently fitted using Eq. S1, giving mean values of T1
av = 780 s, TDNP

av (395.2015 GHz) = 608 s, and 

TDNP
av (395.366 GHz) = 468 s, with the fit parameters detailed in Table S1. Because TDNP

av < T1
av the on/off 

enhancements 𝜖on/off of the DNP profiles in Figure 3 only coincide with the absolute enhancements for 

very long delay times τ between saturation and acquisition, on the order of ~103 s. Using the saturation 

recovery experiments of the mm-wave-on and -off experiments, we computed the absolute and on/off 

enhancements (see Eqs. 1 and 2) at both delay t = 60 s and as t approaches infinity.  
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T1 saturation recovery measurements were also performed at RT under static conditions (Fig. S4d) and at 

100 K (Fig. S4e) and 35 K (Fig. S4f) under MAS conditions.  Under static RT conditions T1 was fit with and 

T1
av = 136 s, and at 100 K and 35 K with 5 kHz MAS the T1 was fit with and T1

av = 5553 s and 5207 s, 

respectively. We note that the fits at 100 and 35 K only give an order-of-magnitude estimate due strong 

noise of the saturation recovery at these temperatures, which is probably due to instabilities in the MAS 

rate at ULT introducing T1 noise over the course of the hours-long experiment 

Table S1. Saturation recovery curve fittings using a stretched exponential fit (see Eq. S1), where the average time 

constant is calculated using the gamma function distribution (see Eq. S2). mm-wave-on measurements indicated by 

(+) and (-) correspond to irradiation at 395.2015 and 395.355 GHz, respectively. The measured values at ULT are only 

rough estimates so they are given in parenthesis. 

Temperature (K) MAS frequency (kHz) 
mm-wave 
irradiation 

Stretched exponential fit 

T1/DNP
av (s) T1/DNP (s) 

Stretch 
factor β 

298 0 off 136 96.2 0.63 

298 6 off 780 463 0.55 

100 5 off (5553) (2610) (0.48) 

35 5 off (5207) (816) (0.33) 
298 6 on (+) 608 445 0.65 

298 6 on (-) 468 337 0.64 
 



 10 

 

Figure S4: Saturation recovery experiments taken at various conditions. a-d. are each taken at RT, with (a) at mm-

wave-off MAS condition, b. at mm-wave-on at the positive DNP enhancement peak (395.2015 GHz), c. at mm-wave-

on on at the negative DNP enhancement peak (395.366 GHz), and (d) at mm-wave-off Static Condition. e. is taken at 

100 K at mm-wave-off MAS condition while f. is taken at 35 K at mm-wave-off MAS condition. All are fitted using the 

stretched exponential function with fit parameters and equation shown on each plot. 

d. DNP profiles at room temperature on other HPHT diamonds samples 

DNP profiles were acquired for three HPHT diamond samples manufactured by Hyperion with different P1 

concentrations (10-20, 100, and 100’s of ppm) and a size of 100 µm, using the same experimental 

procedure as for those in the main text of the paper. The normalized DNP profiles are shown in Figure S5. 

The DNP profiles in absolute value are shown in the inset. 
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Figure S5: DNP profile for HPHT diamonds by Hyperion. 

3. Theory 
a. Electron polarization 

The electron polarization at thermal equilibrium is calculated using Boltzmann’s law 

 𝑃0 = tanh (
ℏ|𝜔0|

2𝐾B𝑇
) = tanh (

𝜇B𝐵0|𝑔|

2𝐾B𝑇
), Eq. S3 

where ℏ, ω0, KB, T, μB, B0, and g are the reduced Planck constant, the Larmor frequency of the electron, 

Boltzmann’s constant, the lattice temperature, Bohr’s magneton, the static magnetic field strength, and 

the g-factor of the electron, respectively. The polarization varies along the EPR spectrum, but a single value 

can be approximated using the isotropic g-factor. 

b. Hole burning models 

This section presents the two approaches that were used in this work to simulate hole burning, i.e., the 

behavior of the EPR line under saturation by mm-wave irradiation: Vega’s electron spectral diffusion model 

(eSD)4,5 and an analytical solution to the diffusion equation, based on recent work by Wenckebach.6 In 

both cases, three mechanisms influence electron spin polarization: mw-wave irradiation, T1e relaxation, 

and spectral diffusion. Only electron Zeeman order is explicitly accounted for (electron spin dipolar order 

is neglected). The influence of 13C nuclear spins on the electron spin dynamics is neglected. These models 

were developed in the context of static DNP and do not account for MAS. They should therefore be seen 

as phenomenological.  

Vega’s eSD model: In Vega’s model, the EPR line is divided into N bins with frequencies ωk and intensities 

fk for which the electron spin polarization P(ωk) is assumed to be homogeneous. The intensity of the line 

is normalized so that ∑ 𝑓𝑘
𝑁
𝑘=1 = 1. This model was presented in several publications. The form described 

here is closest to that presented in Ref. 4,5. However, we have found some small mistakes and typos in the 

publications (eg: missing ℏ in a Boltzmann factor and signs) that we attempted to correct in this work.  

The shape of the EPR line under saturation by mm-wave irradiation at the steady-state is obtained by 

solving numerically the differential equation 

 
𝑑

𝑑𝑡
𝑃⃗ (𝑡) = (𝑾mw + 𝑹1 + 𝑹D)𝑃⃗ (𝑡), Eq. S4 



 12 

where 𝑃⃗ (𝑡) = [1, 𝑃1, 𝑃2, … , 𝑃𝑁]Τ is a vector representing the polarizations in the N bins. The first unity 

term in the vector allows to compute relaxation while keeping the differential equation homogeneous. 

The three matrices Wmw, R1, and RD acting on the polarization vector represent mm-wave irradiation, T1e 

relaxation, and spectral diffusion, respectively. We did not include the DQ and ZQ SE transitions assuming 

that they are weak in our experimental conditions. Wmw represents the saturation of the single quantum 

transitions and only contains non-zero elements on the diagonal, which can be represented as  

 (𝑾mw)𝑘𝑘 = −
𝜔1

2𝑇2

1+(𝜔𝑘−𝜔mw)2𝑇2
2 , Eq. S5 

where ω1, T2, ωk, and ωmw are the strength of the mm-wave field in rad.s-1, the electron spin-spin relaxation 

time constant, the electron spin resonance frequency of bin k, and the mm-wave frequency, respectively. 

The action of R1 can be represented in the subspace of electron spin k as 

 
𝑑

𝑑𝑡
(

1
𝑃𝑘(𝑡)

) = (
0 0

𝑃0,𝑘

𝑇1
−

1

𝑇1

)(
1

𝑃𝑘(𝑡)
), Eq. S6 

where T1,k = T1e is assumed to be constant across the EPR line and P0,k is the Boltzmann polarization for bin 

k, calculated by setting ω0 = ωk in Eq. S3. The non-zero matrix elements of R1 can therefore be written as 

 (𝑹1)𝑘1 =
𝑃0,𝑘

𝑇1
,  Eq. S7 

  (𝑹1)𝑘𝑘 = −
1

𝑇1
.  

Finally, RD, which represents spectral diffusion, is the only matrix with non-diagonal terms, which connects 

bins with each other. It can be represented as the sum 

 𝑹D = ∑ 𝑹D,𝑘𝑗𝑗>𝑘 , Eq. S8 

of matrices in the subspace of electron spin k and j, 

 𝑹D,𝑘𝑗 =
ΛeSD

(𝜔𝑘−𝜔𝑗)
2

1

1+𝜂𝑘𝑗
(
−𝜂𝑘𝑗𝑓𝑗 +𝑓𝑗
+𝜂𝑘𝑗𝑓𝑘 −𝑓𝑘

), Eq. S9 

where ΛeSD, fk and fj are a coefficient describing the efficiency of spectral diffusion in s-3 and the normalized 

EPR intensities of bins k and j, respectively. The thermal correction factor  

 𝜂𝑘𝑗 =
𝑃0,𝑗

𝑃0,𝑘
, Eq. S10 

ensures that spectral diffusion preserves the gradient of polarization at Boltzmann equilibrium that arises 

from the difference in Larmor frequency of the individual spin packets. Note that the thermal correction 

factor in Eq. S10 is defined in this way in Ref. 4. An alternative form of this term is given in several other 

references by the same group (eg, Ref. 5,7,8), which is based on Boltzmann factors 

 𝜂𝑘𝑗 = exp (−
ℏ

𝐾B𝑇
(𝜔𝑘 − 𝜔𝑗)). Eq. S11 

According to Eq. 16b in Ref. 7 and Eq. 69 in Ref. 8, the expression in Eq S11 is supposed to be equal to that 

in Eq. S10. However, these equations are in fact not equal; the proposed Boltzmann factor gives a 
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population ratio, and not a polarization ratio as in Eq. S10. We performed test simulation of the eSD model 

switching off mm-wave saturation (that is, setting ω1 = 0). In this case, only spectral diffusion is active. If 

the thermal correction factor is correct, the polarization across the EPR line, should remain constant at all 

times. We found that Eq. S10 did produce the appropriate gradient of polarization (as predicted by Eq. S3), 

while not Eq. S11 (see Figure S6). We therefore chose to use Eq. S10. 

 

Figure S6: Verification of the validity of the thermal correction factor given in Eq. S10. The polarization as a function 

of frequency is simulated using the eSD (see Eq. S4) for a Gaussian EPR line with standard deviation of 100 MHz 

centered at 396.5 GHz (represented by a grey line in arbitrary units), with no mm-wave irradiation (ω1 = 0), T2 = 1 μs 

(which does not influence the simulation because ω1 = 0), T1 = 1 ms, and ΛeSD = 4000 μs-3. The black dashed line 

represents the initial polarization, computed using Eq. S3. The blue, red dotted, and yellow dashed dotted lines 

represent the final polarization (at tmax = 5⋅T1e = 5 ms) if the thermal correction factor is computed using Eq. S10, 

using Eq. S11, or set to 1, respectively. 

In all cases, we used the differential equation solver of MATLAB ode15s, which is optimized for problems 

with timescales ranging on different orders of magnitude. The differential equation was solved on a time 

range from 0 to tmax = 5⋅T1e. The last vector 𝑃⃗ (𝑡max) computed by ode15s was assumed to represent the 

electron spin polarization at dynamic equilibrium. 

Analytical solution to the spectral diffusion equation: An alternative to Vega’s eSD is to treat spectral 

diffusion as a standard 1-dimensional diffusion equation. A difficulty that arises in this case is how to obtain 

the frequency dependence of the diffusion coefficient. Wenckebach recently proposed an approach based 

on Monte Carlo simulation.6  Here, we use a simple approximation of the diffusion equation where the 

diffusion coefficient is assumed to be constant across the EPR line, as proposed by Vaneeckhaute et al.9 

This approach has the advantage of yielding an analytical solution with a limited number of free 

parameters. Under the assumption of constant T1e and diffusion coefficient D across the EPR line, the 

diffusion equation can be expressed as  

 
𝜕

𝜕𝑡
𝑃(𝜈) = −𝜋𝜔1

2 ℎ(𝜔 − 𝜔μw)𝑃(𝜔) + 𝐷
𝜕2

𝜕𝜔2 𝑃(𝜔) +
𝑃0−𝑃(𝜔)

𝑇1e
, Eq. S12 
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where h and D are the homogeneous broadening and the spectral diffusion coefficient, respectively. If we 

further assume that the homogeneous broadening is small compared to the inhomogeneous broadening, 

the mm-waves are only on resonance with spins of the exact same frequency. Eq. S12 then becomes 

 
𝜕

𝜕𝑡
𝑃(𝜔) = −𝜋𝜔1

2 𝑃(𝜔)𝛿(𝜔 − 𝜔mw) + 𝐷
𝜕2

𝜕𝜔2 𝑃(𝜔) +
𝑃0−𝑃(𝜔)

𝑇1e
 . Eq. S13 

At equilibrium, that is, when Eq. S13 is null, the diffusion equation has the solution  

 𝑃mw(𝜔) = 𝑃0 (1 − exp (−
|𝜔−𝜔mw|

Λ
)), Eq. S14 

where Λ = (DT1e)1/2 is the spectral diffusion length. 

c. DNP model using analytical equations 

This section shows the derivation of simple formula for the profiles of the solid effect (SE), the cross effect 

(CE), and the truncated cross effect (tCE) for the case where spectral diffusion can be neglected. This 

derivation also requires the hypothesis that the electron spin-lattice relaxation time T1e is constant across 

the EPR line, leading to a constant saturation efficiency across the line. Alternatively, assuming full 

saturation yields the same result. It is further assumed that nuclear spin diffusion averages nuclear 

polarization across the sample.  

Solid effect case: If there is no electron spectral diffusion, the polarization of electron spins on resonance 

with double- and zero-quantum transitions (DQ and ZQ) are not affected by each other nor they are 

affected by depolarization of electron spin on resonance with single quantum transition (SQ). In this case, 

SE affects the nuclear polarization only for nuclear spins interacting with electrons on resonance with the 

ZQ and DQ transitions, yielding 

 𝑃I
SE,ZQ(𝜔mw + 𝜔I) = −𝜒𝑃0, Eq. S15 

and 

 𝑃I
SE,DQ(𝜔mw − 𝜔I) = +𝜒𝑃0, Eq. S16 

where ωI, χ, and P0 are the absolute value of the nuclear Larmor frequency, a factor describing the dynamic 

efficiency of the saturation of the SE transitions, and the electron polarization at Boltzmann equilibrium 

(see Eq. S3), respectively. Assuming that nuclear spin diffusion equalizes polarization across the sample 

and that the nuclear Boltzmann polarization and nuclear relaxation are negligible, the bulk nuclear 

polarization is the weighed summed of the two contributions of Eqs. S15 and S16 

 𝑃I
SE(𝜔mw) = 𝑓(𝜔mw + 𝜔I)𝑃I

SE,ZQ + 𝑓(𝜔mw − 𝜔I)𝑃I
SE,DQ Eq. S17 

 = 𝜒𝑃0(𝑓(𝜔mw − 𝜔I) − 𝑓(𝜔mw + 𝜔I)), 

The shape of the SE profile is then given by Eq. S17, dropping constant factors 

 𝑓SE(𝜔mw) = 𝑓(𝜔mw − 𝜔I) − 𝑓(𝜔mw + 𝜔I), Eq. S18 

which can be obtained concisely as the convolution integral 

 𝑓SE(𝜔mw) = (𝑓 ∗ 𝑢)[𝜔mw], Eq. S19 
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of the EPR line with the function 

 𝑢(𝜈) = δ(𝜔 − 𝜔𝐼) − δ(𝜔 + 𝜔𝐼), Eq. S20 

where δ is the Dirac delta function. 

Cross effect case: The CE transfers the polarization difference between two electrons to a nuclear spin via 

triple spin flips, provided the Larmor frequency difference of the two electrons ω1 – ω2 matches the 

nuclear Larmor frequency ωI. At equilibrium, a nuclear spin interacting with such a pair of electron spins 

has polarization10,11 

 𝑃I =
𝑃1−𝑃2

1−𝑃1𝑃2
, Eq. S21 

where P1 and P2 are the polarizations of the two electron spins. The denominator is a normalization 

constant that only plays a role at high electron polarization. Assuming that spin diffusion averages the 

nuclear spin polarization, the bulk nuclear polarization is given by the weighted average over all possible 

electron spin pairs fulfilling the CE matching condition  

 𝑃I =
1

𝐹N
∫𝑑𝜔𝑓(𝜔)𝑓(𝜔 − 𝜔I)

𝑃(𝜔)−𝑃(𝜔−𝜔I)

1−𝑃(𝜔)𝑃(𝜔−𝜔I)
, Eq. S22 

where P(ω) is the electron polarization at frequency ω in the EPR line, and the normalization factor 

condition  

 𝐹N = ∫𝑑𝜔𝑓(𝜔)𝑓(𝜔 − 𝜔I). Eq. S23 

The term f(ωI)f(ω – ωI)/FN in Eq. S22 expresses the probability for a particular pair of electron spins to fulfill 

the CE matching condition, given the EPR intensities f(ωI) and f(ω – ωI). In absence of mm-wave irradiation, 

the P(ωI) – P(ω – ωI) is equal to the nuclear Boltzmann polarization PI0 and Eq. S22 predicts PI = PI0. In this 

case, CE serves as a T1 relaxation mechanism for nuclear spins. CE DNP consist of creating an out-of-

equilibrium difference between electron spins via mm-wave (or microwave) irradiation that then transfers 

spontaneously to nuclear spins. 

If there is no spectral diffusion, triple spin flips only result in hyperpolarization between the electron spins 

being saturated (with ω = ωmw) and those satisfying ω = ωmw – ωI and ω = ωmw + ωI, on the left and on the 

right of the irradiation frequency, respectively. In these two cases, Eq. S21 gives the polarization of nuclear 

spins interacting with such electron spin pairs are  

 𝑃I
CE,left(𝜔mw) =

𝑃(𝜔mw)−𝑃(𝜔mw−𝜔I)

1−𝑃(𝜔mw)𝑃(𝜔mw−𝜔I)
, Eq. S24 

and 

 𝑃I
CE,right(𝜔mw) =

𝑃(𝜔mw+𝜔I)−𝑃(𝜔mw)

1−𝑃(𝜔mw)𝑃(𝜔mw+𝜔I)
. Eq. S25 

Because there is no spectral diffusion, the polarization of the left and right partners is that of thermal 

equilibrium P0 

 𝑃(𝜔mw − 𝜔𝐼) = 𝑃(𝜔mw + 𝜔I) = 𝑃0, Eq. S26 
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and assuming a homogeneous T1e across the EPR line (or that saturation is infinite), the saturation factor 

is constant across the EPR line, yielding 

 𝑃(𝜔mw) = 𝑃sat. Eq. S27 

We therefore have  

 𝑃I
CE,left(𝜔mw) =

𝑃sat−𝑃0

1−𝑃sat𝑃0
. Eq. S28 

and  

 𝑃I
CE,right(𝜔mw) =

𝑃0−𝑃sat

1−𝑃0𝑃sat , Eq. S29 

Hence, the integral of Eq. S22 is the sum of the two terms of Eqs. S28 and S29, with the weights, 

f(ωmw)f(ωmw – ωI)/FN and f(ωmw)f(ωmw + ωI)/FN, respectively, yielding 

 𝑃I
CE(𝜔mw) =

𝑓(𝜔mw)𝑓(𝜔mw−𝜔I)

𝐹N
𝑃I

CE,left(𝜔mw) +
𝑓(𝜔mw)𝑓(𝜔mw+𝜔I)

𝐹N
𝑃I

CE,right(𝜔mw)  Eq. S30 

 =
1

𝐹N

𝑃0−𝑃sat

1−𝑃0𝑃sat 𝑓(𝜔mw)(𝑓(𝜔mw + 𝜔I) − 𝑓(𝜔mw − 𝜔I)) .  

The shape of the CE profile is then given by Eq. S30, dropping the constant factors 

 𝑓CE(𝜔mw) = 𝑓(𝜔mw)(𝑓(𝜔mw + 𝜔I) − 𝑓(𝜔mw − 𝜔I)) . Eq. S31 

As for the SE, this can be computed in a compact way as a convolution integral (or as the product of the 

EPR line with the SE profile) 

 𝑓CE(𝜔mw) = 𝑓(𝜔mw)((𝑓 ∗ 𝑢)[𝜔mw]) = 𝑓(𝜔mw)𝑓SE(𝜔mw). Eq. S32 

Truncated cross effect case: the tCE without spectral diffusion can be computed in a similar way as the CE. 
Let us call fS and fF the EPR lineshape of the slow- and fast-relaxing spins, respectively. For the case where 
spectral diffusion among the slow-relaxing spins can be neglected, triple spin flips leading to nuclear 
hyperpolarization only occur for the saturated slow-relaxing spin (with ωS = ωmw) and the fast-relaxing spins 
satisfying ωF = ωmw – ωI and ωF = ωmw + ωI. Eqs. S24 and S25 can then be adapted to the tCE as  

 𝑃I
tCE,left(𝜔mw) =

𝑃S(𝜔mw)−𝑃F(𝜔mw−𝜔I)

1−𝑃S(𝜔mw)𝑃F(𝜔mw−𝜔I)
, Eq. S33 

and 

 𝑃I
tCE,right(𝜔mw) =

𝑃F(𝜔mw+𝜔I)−𝑃S(𝜔mw)

1−𝑃S(𝜔mw)𝑃F(𝜔mw+𝜔I)
. Eq. S34 

Assuming that fast-relaxing spins are always at Boltzmann polarization P0 and writing PS(ωmw) = Psat, we 

have 

 𝑃I
tCE,left(𝜔mw) =

𝑃sat−𝑃0

1−𝑃sat𝑃0
, Eq. S35 

and 

 𝑃I
tCE,right(𝜔mw) =

𝑃0−𝑃sat

1−𝑃sat𝑃0
. Eq. S36 
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Hence, the  

 𝑃I
tCE(𝜔mw) =

𝑓S(𝜔mw)𝑓F(𝜔mw−𝜔I)

𝐹N
𝑃I

tCE,left(𝜔μw) +
𝑓S(𝜔mw)𝑓F(𝜔mw+𝜔I)

𝐹N
𝑃I

tCE,right(𝜔mw)  

 =
1

𝐹N

𝑃0−𝑃sat

1−𝑃sat𝑃0
𝑓S(𝜔mw)(𝑓F(𝜔mw + 𝜔I) − 𝑓F(𝜔mw − 𝜔I)) , Eq. S37 

where the normalization factor is defined as 

 𝐹N = ∫𝑑𝜔𝑓S(𝜔)(𝑓F(𝜔 + 𝜔I) + 𝑓F(𝜔 − 𝜔I)). Eq. S38 

The shape of the tCE profile is then given by Eq. S38, dropping constant factors 

 𝑓tCE(𝜈μw) = 𝑓S(𝜔mw)(𝑓F(𝜔mw + 𝜔I) − 𝑓F(𝜔mw − 𝜔I)). Eq. S39 

In the case where the fast-relaxing are shifted from the slow-relaxing by approximately ωI (i.e., resonance-

matched), only one of the two terms fF(ωmw + ωI) and fF(ωmw – ωI) is non-zero. Furthermore, if the 

resonance of the fast-relaxing spins is broad compared to the slow-relaxing spins, the value of fF in the one 

term that is non-zero can be considered constant over the range where fS(ωmw) is non-zero. Then, we have 

either  

 𝑓tCE(𝜔mw) ≈ +𝑓S(𝜔mw), Eq. S40 

or 

 𝑓tCE(𝜔mw) ≈ −𝑓S(𝜔mw), Eq. S41 

whether the fast-relaxing spins are shifted by +ωI or –ωI with respect to the EPR line of the slow-relaxing 

spins, respectively. In this case, the DNP profile has the same shape as the EPR line, up to a sign, as is the 

case for the Overhauser effect. 

d. DNP model including spectral diffusion 

To include spectral diffusion in the simulations of the CE and tCE, one must consider the triple flips of the 

nucleus with all pairs of electrons spins fulfilling the CE matching conditions, not only on resonance with 

the mm-waves. In the case of the CE, the sum can be written as 

 𝑃I
CE(𝜔mw) =

1

𝐹n
∑ 𝑓(𝜔𝑘)𝑓(𝜔𝑘 + 𝜔I)

𝑃mw(𝜔𝑘+𝜔I)−𝑃mw(𝜔𝑘)

1−𝑃mw(𝜔𝑘+𝜈I)𝑃mw(𝜔𝑘)
𝑁
𝑘=1 , Eq. S42 

where N is the number of bins in the EPR spectrum, and the normalization factor is 

 𝐹n = ∑ 𝑓(𝜔𝑘)𝑓(𝜔𝑘 + 𝜔I)
𝑁
𝑘=1 . Eq. S43 

Note that it is not necessary to account for triple-spin flips on the left and right, as they are both covered 

by the summation. In the case of the tCE, the integration yields 

 𝑃I
tCE(𝜔mw) =

1

𝐹n
∑ (𝑓S(𝜔𝑘)𝑓F(𝜔𝑘 − 𝜔I)

𝑃0−𝑃S
mw(𝜔𝑘)

1−𝑃0𝑃S
mw(𝜔𝑘)

+ 𝑓S(𝜔𝑘)𝑓F(𝜔𝑘 + 𝜔I)
𝑃S

mw(𝜔𝑘)−𝑃0

1−𝑃0𝑃S
mw(𝜔𝑘)

)𝑘 , Eq. S44 

where N is the number of bins in the EPR spectrum, and the normalization factor is 

 𝐹n = ∑ (𝑓S(𝜔𝑘)𝑓F(𝜔𝑘 − 𝜔I) + 𝑓S(𝜔𝑘)𝑓F(𝜔𝑘 + 𝜔I))
𝑁
𝑘=1 . Eq. S45 
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4. Simulation results 
a. P1 EPR line 

Figure S7 shows the simulated EPR line at 14.1 T as in the main text of the paper (black line) together with 

the contributions of the different P1 populations. 

 

Figure S7: Simulation of the EPR line using Easyspin’s function pepper for solid-state powder averaging. The summed 

spectrum (in black) is decomposed into three contributions (isolated, dipolar-broadened, and exchange-coupled 

pairs). See the Methods section for details on the simulation parameters. 

b. DNP profiles with different hole burning models 

The DNP profiles were simulated for P1 spins at 14.1 T as a linear combination 

 𝑓(𝜔mw) = 𝑥tCE𝑓tCE(𝜔mw) + (1 − 𝑥tCE)𝑓CE(𝜔mw), Eq. S44 

where xtCE is contribution of the tCE profile between 0 and 1, using Eqs. S42 and S44. The polarization of  

the slow-relaxing P1 spins as function of frequency PS
mw(ωk) was computed using both hole burning models 

presented in Section 3b. In both cases, it was assumed that dipolar-broadened and exchange-coupled P1 

spins play the role of slow- and fast-relaxing partners. Figure S8 shows the simulated DNP profiles using 

Vega’s eSD model (see Eq. S4) and the analytical solution to the diffusion equation (see Eq. S14), in panel 

a and b, respectively. For the eSD model, 11 free parameters were manually fit to the experimental data: 

xtCE, T1 (individually for set of experimental conditions), T2, ω1, and ΛeSD, respectively, (the last three being 

kept constant for all conditions). For the analytical model, the only fit parameters were xtCE and the spectral 

diffusion length Λ. Table S2 summarizes the fit results. The digitization of the EPR spectrum was set to a 

low value for the eSD model (as represented by dots on the EPR lines of the bottom plots of Figure S8a) to 

fulfill the condition4 that the frequency difference between the bins (8 MHz) does not exceed the 

homogeneous broadening: ωk+1 - ωk > 2/T2 (8 MHz). In the case of the analytical model, there is 

requirement regarding the frequency separation between the bins. 
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Table S2: Fit parameters of the spectral diffusion/hole burning models used to compute the DNP profiles shown in 

Figure S8. 

Vega’s eSD model  Analytical model 

T (K) 
298, 

Static 

298, 

MAS 
100 35  T (K) 

298, 

Static 

298, 

MAS 
100 35 

xtCE 0.5 0.5 0.5 0.5  xtCE 0.6 0.6 0.7 0.7 

T1 (ms) 0.12 0.12 4 5  Λ (MHz) 22  20 130  130  

T2 (ns) 40       

ω1/2π (kHz) 300       

ΛeSD (μs-3) 800       

 

Figure S8: Computation of the simulated DNP profiles using Eqs. S42 and S44 and the Vega’s eSD model (see Eq. S4) 

and the analytical solution to the diffusion equation (see Eq. S14), panel a and b, respectively. In each panel, the top 

row represents the normalized experimental DNP profiles (colored symbols) and the model (black lines). The bottom 
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row represents the EPR line of the slow-relaxing spins under saturation (colored lines) compared with that at thermal 

equilibrium (grey lines), for three different mm-wave frequencies (represented by vertical dashed lines). 

Table S3: Separation between the positive and negative DNP optima in the experimental profiles Δexp, compared with 

that of the simulated profiles Δsim (simulated using the analytical solution to the diffusion equation), and the profiles 

of the tCE and CE contributions, ΔtCE and ΔCE, respectively, for the simulation using the analytical solution to the 

diffusion equation. 

T (K) Δexp Δsim ΔtCE ΔCE 

298, static 162 175 188 150 

298, MAS 162 175 184 150 

100 215 188 196 163 

35 215 196 196 163 

 

c. SE-DNP simulation 

Figure S9 shows the simulated DNP profile for the SE (in gray) using Eq. S19 and the entire EPR line (isolated, 

dipolar-broadened, and exchange-coupled spins) compared with the experimental results in all 

experimental conditions (colored symbols).  

 

Figure S9: SE simulation using Eq. S19 (gray line), compared with the experimental data (colored dots). 

d. Prediction of the DNP profiles at 3.3 and 6.9 T 

The 13C-DNP profiles acquired at 3.3 and 6.9 T and room temperature for the same diamond sample were 

reported in Ref. 12. It is shown in Figure S10 as red triangles. We applied the model shown Figure 6, that is, 

CE and tCE where spectral diffusion is computed using the analytical expression of Eq. 3. In these 

conditions (lower field and possibly stronger saturating field), the contribution of the SE is more 

pronounced than at 14.1 T, so it was included in the simulation. The black lines show the individual 

simulated DNP profiles and their sum. The EPR line of the slow relaxing spins (dipolar-broadened and 

isolated) at thermal equilibrium and under saturation at a select frequency (grey and lines, respectively) 

is shown in the top right plot of each panel. The EPR line of the fast-relaxing spins (exchange-coupled pairs) 

is shown in the bottom right plot of each panel. The spectral diffusion length and relative contributions of 

the tCE, CE, and SE were manually fitted. The static magnetic field of 3.3476 and 6.9074 T were also let 

free to align the simulated and experimental profiles. The spectral diffusion length was fitted to 6 and 22 

MHz at 3.3 and 6.9 T, respectively. For comparison, a spectral diffusion length of 22 MHz was obtained at 

14.1 T (see Table S2).  
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The model is in good agreement with the experimental data at 6.9 T (see Figure S10b). At 3.3 T, the model 

reproduces most of the features (see Figure S10a). However, the central negative absorptive feature is not 

reproduced by the model (highlighted in yellow in Figure S10a). This very feature was attributed to tCE by 

Bussandri et al.12 It is possible that the fast-relaxing spins taking part into the proposed tCE feature are 

spin species different from P1 centers, as suggested by Bussandri et al.12 

 

Figure S10: a,b. Comparison of the experimental DNP profiles reported in Ref. 12 at 3.3 and 6.9 T, respectively, and 

room temperature in static mode for the same diamond sample as in this study. The top plots on the right of each 

panel show the EPR line of the slow-relaxing spins at thermal equilibrium and under saturation at a select frequency, 

represented as grey and red lines, respectively.  The black dashed lines represent the microwave irradiation frequency 

and the two corresponding positions for triple-spin flips partners. The bottom plots on the right of each panel show 

the EPR line of the fast-relaxing spins at thermal equilibrium. The black dashed lines represent the two positions for 

triple-spin that correspond to the irradiation frequency on the plot of the slow-relaxing spins. The yellow area in 

panel a highlights the region where the model does not reproduce the experimental data. 

e. Transition distribution for exchange-coupled P1 pairs 

The EPR spectrum of the exchange-coupled was simulated using EasySpin function pepper, with the option 

that separates the EPR spectrum into the components corresponding to different transitions (option 

separate set to the value transitions) for a magnetic field of 14.1 T and using the parameters given in the 

Methods section of the paper. The resulting spectra are shown in the left panel of Figure S11 (as colored 

lines). The sum of all the components corresponds to the whole EPR line and is shown as a black line. The 

transition intensities were calculated by integrating the individual components. Their relative 

contributions of the transitions are shown on the right panel of Figure S11 as blue dots, ordered in 

descending intensity. The cumulative distribution of the blue curve in Figure S11 is shown in black on the 

same plot. This plot shows that the most intense transition only contributes to about 5% of the total EPR 

line and the 20 first most intense transitions account for less than 50% of the total EPR line. 
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Figure S11: Decomposition into individual transitions of the powder-averaged EPR spectrum of exchange-coupled P1 

spin pairs. Left: EPR spectrum of the individual transitions (colored lines) and sum of all transitions (black line). Right: 

Transition intensities (obtained by integrating the spectra on the left) ordered from most to least intense (blue dots) 

and cumulative distribution of the transition intensities (black line). 
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