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1. Instrumentation

a. Ultra-low temperature MAS-NMR

We used a ULT MAS-NMR setup operating from room temperature down to 35 K using helium gas. This
setup, particularly the temperature control, was described in detail in Ref. L. In brief, it consists of a 14.1 T
wide-bore superconducting magnet, a ULT MAS probe with a helium gas recirculation system for helium-
gas cooling and spinning of the sample down to temperatures of 30 K, and a gyrotron using second
harmonic generation to produce mm-wave entering the ULT MAS probe from the top via a waveguide. The
HX double resonance probe used is similar in nature to the HC double resonance probe used in Ref. ?,
except it has additional replaceable capacitors to switch nuclei for X channel tuning. When no additional
capacitors are used on the X channel, the frequency is tuned to *3C, which is the configuration that was
used in this work. The system is equipped with a top-loading system for sample exchange that was not
present in Ref. 1.

b. Gyrotron System

The gyrotron system used here was designed and assembled by Bridgel2. It comprises several key
components, including a magnetron-injection gun, an internal cavity, an internal mode converter, an
output window, and a collector. Prior to the operation, the gyrotron tube underwent high-temperature
maintenance over several days to reduce gas pressure and enhance operational stability.

The magnetron-injection gun (MIG) is designed to generate an electron beam at a nominal cathode voltage
ranging from 21 to 23 kV, with a beam current of up to 160 mA. The output electron beam is directed into
the internal cavity, which as described in the main text, is configured to support second harmonic
generation (SHG) in the transverse electric (TE) mode at 395 GHz at a magnetic field of 7.3 T provided by
a Cryomagnetic Inc. cryogen-free superconducting magnet. The internal cavity is thermally isolated from
the cavity containing the MIG and internal mode converter, allowing frequency tuning via temperature
modulation at approximately 5 MHz/°C, with a Polyscience chiller used to adjust the gyrotron cavity
temperature between 10 °C and 70 °C.

The internal mode converter transforms the TE mode produced in the cavity into a Gaussian beam which
then exits the gyrotron tube through an output window perpendicular to the tube. The output window
consists of a single disk of Al,Os. The collector, located at the top of the gyrotron tube, dissipates the spent
electron beam and is cooled by an SMC thermos water-cooled chiller, set to 15°C, to maintain stability and
prevent overheating during operation. Vacuum maintenance of gyrotron tube is facilitated by an Vaclon
pump from Duniway Stockroom Corp.

The 7.3T cryogen-free magnet, custom-designed and built by Cryomagnetic Inc., utilizes twisted multiple
filamentary NbTi wire and operates at 4.2 K. Cooling of the cryogen-free magnet which is achieved through
the combined use of a Sumitomo F-70 water-cooled compressor and an RDK-408D2 Sumitomo cold head.
The magnet is energized using a Cryomagnetic Model 4G-100 Superconducting Magnet Power Supply, and
its temperature is monitored by a Cryomagnetic TM-612 cryogenic temperature monitor with four
measurement channels. The configuration of the cryogen-free magnet allows for a reduced path length
from the internal cavity to the output window, enhancing system efficiency. The cavity region is positioned
inside the 7.3 T magnet, while the electron gun is located within a separate, independently adjustable gun
coil, allowing for optimization during gyrotron testing.



The control system, designed to monitor and control various parameters for the operation of the 395 GHz
gyrotron, interfaces a Python-based software developed by Bridgel2. The software controls operating
parameters, including the electron beam voltage and current, body current, gun coil voltage and current,
chiller temperatures, and vacuum levels within the gyrotron tube. The interface features a proportional-
integral-derivative (PID) controller, which stabilizes the electron beam current by adjusting the filament
current. The control system is powered by a modified 4 kW Spellman X-ray power supply (DF series), which
provides the necessary high voltage for system operation. Additionally, the two thermos chiller units—one
dedicated to the cavity and the other to the collector—can be controlled remotely, allowing for precise
management of the system's thermal environment.

The activation of the gyrotron tube follows a specific sequence, beginning with the initiation of the
filament current, followed by the gun coil current, and finally the cathode voltage. The output power and
frequency of the mm-wave radiation depend on several factors, including the cathode voltage, beam
current, cavity temperature, and magnetic field strength. These parameters were carefully optimized to
ensure stable and consistent mm-wave output. During experimental measurements, the cathode voltage
was set to 23.6 kV, with the beam current maintained at 150 mA by adjusting the filament current to
approximately 2 A through PID control. The mm-wave frequency is tuned by adjusting the cavity
temperature, with adjustments ranging from 10°C to 67.5°C. Furthermore, the frequency can be tuned to
higher values by reducing the cathode voltage to 21.5 kV, as demonstrated in the main text Figure 2.

c. Room requirements

The chiller water is provided by a custom-built Haskris Chiller, capable of delivering a flow rate of 64 liters
per minute to supply water for the four Sumitomo compressors and one SMC chiller. The ULT system
requires a power supply of 50 A at 208 V. Each of the four compressors requires a 208 V — 50 A output. All
instruments are backed up by an uninterrupted power supply (UPS). The Sumitomo compressor, Haskris
Chiller and SMC chiller were located in a separated room, which reduce the noise for user.

d. Top-loading System

Recently, a sample exchange capability under low temperatures was added to the probe through a top-
loading system, allowing for more efficient cooling and reduced waiting time for sample exchange. The
top-loading system includes a control system, a sample catcher, a vacuum buffer tank, a diaphragm dry
vacuum pump, a rotary valve actuator switch, a transfer line, and an adaptor at the top of the probe outer
jacket. The interconnection of each component in the top-loading system is illustrated in the
accompanying diagram and described in Figure S1.

The outer jacket of the DNP ULT probe is connected to the sample catcher via the transfer line which
contains a rotary valve actuator. The control system includes a vacuum gauge to monitor the pressure of
the buffer tank, which is vacuumed by the diaphragm dry vacuum pump. Another vacuum/pressure gauge
monitors the pressure from the sample catcher to the probe. The top-loading system facilitates successful
loading of rotors into the probe at 35 K and ejection of rotors out of the probe at 90 K.
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Figure S1: (a) The scheme of top-loading system and (b) the photos of DNP probe with outer jacket, top-loading
controlling system, sample catcher and diaphragm vacuum pump.

To insert a new rotor, the DNP probe is first cooled down to 35 K. Then, the rotor is placed into the sample
catcher. The sample catcher and the transfer line before the gate are purged with the vacuum pump and
refilled with He gas 15 times. After purging, the gate is opened, and the rotor is inserted into the probe by
filling it with He gas. After insertion, the gate is immediately closed to avoid exposure to air. Similarly, the
rotor can be ejected from the probe when the probe is warmed up to 90 K by vacuuming the transfer line
when the gate is open. The rotor is caught by the sample catcher.

e. Relation between gyrotron frequency and cavity temperature

To determine the correlation of the gyrotron cavity temperature with the produced mm-wave frequency,
the frequency of the mm-wave beam was measured using a frequency measurement system (FMS) by
Bridgel2. The FMS operates by mixing a local oscillator frequency vio and that of the gyrotron mm-wave
frequency vmw, such that vip = |vyw * NVLol, where n is the harmonic and v is the intermediate
frequency. Because it does not feature a bandpass filter, the FMS displays both the upper and lower side
band, and all other possible leaked frequencies of the gyrotron from lower stages, if they exist. The FMS
software can automatically detect and classify the sidebands and provides a unique frequency
measurement with an accuracy +1 MHz. The gyrotron frequency was measured by removing a portion of
the waveguide and placing a mirror approximately 1 m away from the gyrotron cavity output, reflecting at
a 45° angle, and positioning the frequency measurement system (FMS) 25.4 cm away from the mirror.

The power output of the gyrotron was measured using a Scientech power meter, placed approximately 1
m away from the output window along the waveguide. To determine the actual power, the measured value
was adjusted by a calibration factor of 2.75. This calibration factor was obtained by a combination of water
and dry calorimeter to account for the measured (absorbed) power compared to the real power (including
both absorbed and reflected power). The reflection/absorption of the Scientech calorimeter head
(ACS5000S) was measured on a Vector Network analyser to determine the correction factor. While the
gyrotron power is constant at approximately 1 W during cavity temperature tuning, it changes significantly



during tuning of any other gyrotron parameters including cathode voltage, beam current, and gyrotron
magnetic field.

The relation between the mm-wave frequency and the cavity temperature was found to be approximately
linear (see Figure S2). However, a closer fit is obtained when using a second order polynomial (see Figures
2b and S2). We also observed that the relation between the mm-wave frequency and the cavity
temperature was subject to evolution over time (see Figure S2). In our current setup, the mm-wave
frequency is measured by replacing a section of the waveguide with a mirror to divert the mm-wave beam
to a frequency measurement device (see the Methods section). To ensure a sufficient resolution of the
frequency during the acquisition of DNP profiles, the mm-wave frequency was measured at the beginning
and the end of each DNP profile, and at several intermediate points (typically every 5°C or 25 MHz). The
guadratic fit of Figure 2b was found to predict the frequency of the resulting dataset with a root mean
square error of 2.7 MHz (see Figure S3). While mm-wave frequency fluctuations occur due to sensitivity
to slight changes in proportional-integral-derivative (PID)-controlled parameters, such as beam current
and cavity temperature, the fluctuations are minor and do not distort the broad DNP features discussed
in the later sections. Furthermore, the beam current (and thus indirectly, the output power) was held
stable to about 0.3 % by the PID controller in the gyrotron control system. Details on the instrumentation
setup for mm-wave frequency and power measurements are provided in the Methods section and Sl
Section le.

The frequency response of the gyrotron to its cavity temperature was measured twice at different dates
(on July 18™ and September 3, 2024), using the measurement device described above. In both cases, the
temperature of the cavity was stepped from low to high temperature, letting the cavity stabilize during 10
min before recording the frequency. The two calibration curves yielded slightly different results. Figure S2
shows that a linear regression fits the first calibration data set well with R; = 0.9994, with randomly
dispersed residuals. The calibration second data set is not fit well by the linear regression (R, = 0.998) and
the residuals show a clear trend. Adding a quadratic correction makes the fit better R, = 0.9997, with a
less pronounced trend of the residuals.

Because we found that the relation between temperature and frequency was subject to variation over
time, we recorded the DNP profiles monitoring the frequency at multiple points along the acquisition of
the profile to be able to correct for possible drifts. During the acquisition of five different DNP profiles, the
mm-wave frequency was measured at a total of 57 temperatures. We used this data set and compared it
against the prediction of the calibration curves of Figure S2. Figure S3 shows the deviation between the
experiment and predicted frequency Vex, — Veai, for the 57 measurements and the three calibration curves
of Figure S2. The root mean square error (RMSE) on the prediction by each calibration (which corresponds
to the root mean square of the data points on the plot) is shown on each plot. The RMSE of the prediction
using the quadratic calibration curve obtained from the data set of September 3™ is equal to 2.8 MHz,
which is about twice smaller than for the two other calibration curves. Furthermore, the deviations for
this calibration curve does not show a clear trend as they do for the two other curves. We therefore chose
to use the quadratic calibration curve to compute the frequency in the DNP profile shown in this work.
The RMSE of 2.8 MHz is the result of the uncertainty on both the gyrotron frequency and the frequency
measurement. It therefore sets an upper bound for the standard deviation of the mm-wave frequency
produced by the gyrotron.
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Figure S3: Difference between the measured mm-wave frequency vex and the frequency calculated ve, using the
three calibration curves of Figure S2. The measured mm-wave frequencies correspond to a data set of 57
temperature — frequency pairs obtained during the course of five individual DNP profiles.

2. Experimental

a. NMR measurements

13C NMR spectra were acquired using the Delta v6.0 NMR acquisition and data processing software from
JEOL. Saturation recovery measurements were performed with the pulse sequence: (tsat) — T — 1/2-
detection, where the saturation pulse train uses tt = (1/2—twair)n = 10 ms, with twai: =1 ms, T =60 s and
/2 =4.5 us or 7.0 us with 15 dB or 24 dB attenuation at RT and ULT, respectively, from the full power for
both saturation and detection. For DNP experiments, continuous wave (CW) mm-wave irradiation was
applied throughout the pulse sequence, and the data was acquired with two scans at each mm-wave
frequency. For T; and Tonp build-up curve measurements, the same saturation-recovery pulse sequence
was used without and with mm-wave irradiation respectively, and by varying the time interval t from 0.1
s to 6 h. The spectra were exported as raw FID data from the Delta software and processed using the
Python DNPLab package v2.1.19.



b. EPR measurements

EPR experiments were performed on a home-built 13.8 T dual DNP/EPR spectrometer equipped with a
closed-cycle helium cooling system and using a home-built pulse forming unit, an amplifier multiplier chain
(AMC), and a quasi-optical induction mode bridge, as described elsewhere.?? Frequency-swept EPR signals
were measured using an echo sequence (ty)e1 — Te — (tp)p2 — Te — (detection)eq with a 16-step phase cycling
@1=[0°4,90°%,180°, 270°4] and ¢, = [0°,90°, 180°, 270°]4 for the two pulses and @4 = @1 - 2¢, for detection.
At RT, the pulse length and echo time were t, = 1.6 ps and te = 0.5 us, respectively, and the signal was
averaged over 100 shots with a repetition time of 2 ms. At 35 K, the pulse length and echo time were t, =
1.8 us and te = 0.85 ps, respectively and the signal was recorded with a single shot and a repetition time
of 1s. Saturation experiments were performed by adding a pump pulse of length toump = 10 ms at the same
frequency as the probe, with a delay 14 of 1 us between the pump and probe blocks. The pulse length and
echo time 1. for each temperature were the same as in the frequency-swept EPR experiments with 50
averages at RT and a single shot at 35 K and a repetition time of 14 ms and 0.5 s for the RT and 35 K
experiments respectively.

The spin counting was performed on a CW X-band Bruker Elexsys E500 spectrometer.

c. Saturation Recovery T1 and Tone measurements
Saturation recovery measurements were acquired for the microdiamond sample presented in the main
text, using the pulse sequence and parameters described in the Methods sections, for both mm-wave-on
and -off conditions. T: and Tpnp measurements were processed using the DNPLab Python package of data
taken from the JEOL Delta software. The FIDs were left-shifted to remove the initial filter signal and Fourier
transformed using zero-filling to 1226 points. The single *C NMR signal of diamond was then integrated
by summing the spectrum intensity on a window of 23 ppm. The signal integrals along time t were fitted
with a stretched exponential model
\B

M(t) = My, — (M, — My)exp (— (;) ), Eq. S1
where T and 6 are build-up time constant (T: and Tpne, for mm-wave-off and -on measurements,
respectively) and the stretch factor between 0 and 1, respectively. The average build-up time constant was
obtained as

Tav — %F (%)’ Eq. S2

where T is the gamma function.

RT saturation recovery experiments were acquired using 6 kHz MAS both without (Fig. S4a) and with mm-
wave irradiation at 395.2015 GHz (positive enhancement peak, Fig. S4b) and 395.366 GHz (negative
enhancement peak, Fig. S4c) to obtain the Tpne and T constants, respectively. These curves were
subsequently fitted using Eq. S1, giving mean values of T:?" = 780 s, Tpne®¥ (395.2015 GHz) = 608 s, and
Tone?¥ (395.366 GHz) = 468 s, with the fit parameters detailed in Table S1. Because Tonp®' < T1® the on/off
enhancements €,y 0fr Of the DNP profiles in Figure 3 only coincide with the absolute enhancements for
very long delay times t between saturation and acquisition, on the order of ~10% s. Using the saturation
recovery experiments of the mm-wave-on and -off experiments, we computed the absolute and on/off
enhancements (see Egs. 1 and 2) at both delay t = 60 s and as t approaches infinity.



T:1 saturation recovery measurements were also performed at RT under static conditions (Fig. S4d) and at
100 K (Fig. S4e) and 35 K (Fig. S4f) under MAS conditions. Under static RT conditions T; was fit with and
T:*=136 s, and at 100 K and 35 K with 5 kHz MAS the T: was fit with and T;*' = 5553 s and 5207 s,
respectively. We note that the fits at 100 and 35 K only give an order-of-magnitude estimate due strong
noise of the saturation recovery at these temperatures, which is probably due to instabilities in the MAS
rate at ULT introducing T; noise over the course of the hours-long experiment

Table S1. Saturation recovery curve fittings using a stretched exponential fit (see Eq. S1), where the average time
constant is calculated using the gamma function distribution (see Eqg. S2). mm-wave-on measurements indicated by
(+) and (-) correspond to irradiation at 395.2015 and 395.355 GHz, respectively. The measured values at ULT are only
rough estimates so they are given in parenthesis.

Stretched exponential fit
mm-wave

Temperature (K)  MAS frequency (kHz) irradiation T/one™ (5) T () ét(:tes:l;
298 0 off 136 96.2 0.63
298 6 off 780 463 0.55
100 5 off (5553) (2610) (0.48)
35 5 off (5207) (816) (0.33)
298 6 on (+) 608 445 0.65
298 6 on (-) 468 337 0.64
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Figure S4: Saturation recovery experiments taken at various conditions. a-d. are each taken at RT, with (a) at mm-
wave-off MAS condition, b. at mm-wave-on at the positive DNP enhancement peak (395.2015 GHz), c. at mm-wave-
on on at the negative DNP enhancement peak (395.366 GHz), and (d) at mm-wave-off Static Condition. e. is taken at
100 K at mm-wave-off MAS condition while f. is taken at 35 K at mm-wave-off MAS condition. All are fitted using the

stretched exponential function with fit parameters and equation shown on each plot.

d. DNP profiles at room temperature on other HPHT diamonds samples

DNP profiles were acquired for three HPHT diamond samples manufactured by Hyperion with different P1
concentrations (10-20, 100, and 100’s of ppm) and a size of 100 um, using the same experimental
procedure as for those in the main text of the paper. The normalized DNP profiles are shown in Figure S5.

The DNP profiles in absolute value are shown in the inset.
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Figure S5: DNP profile for HPHT diamonds by Hyperion.

3. Theory
a. Electron polarization

The electron polarization at thermal equilibrium is calculated using Boltzmann’s law

P, = tanh (ZlKLB(’Tl) = tanh (%‘:Tgl), Eq.S3

where #, wo, Ks, T, Us, Bo, and g are the reduced Planck constant, the Larmor frequency of the electron,
Boltzmann’s constant, the lattice temperature, Bohr’s magneton, the static magnetic field strength, and
the g-factor of the electron, respectively. The polarization varies along the EPR spectrum, but a single value
can be approximated using the isotropic g-factor.

b. Hole burning models

This section presents the two approaches that were used in this work to simulate hole burning, i.e., the
behavior of the EPR line under saturation by mm-wave irradiation: Vega’s electron spectral diffusion model
(eSD)** and an analytical solution to the diffusion equation, based on recent work by Wenckebach.® In
both cases, three mechanisms influence electron spin polarization: mw-wave irradiation, Tie relaxation,
and spectral diffusion. Only electron Zeeman order is explicitly accounted for (electron spin dipolar order
is neglected). The influence of 3C nuclear spins on the electron spin dynamics is neglected. These models
were developed in the context of static DNP and do not account for MAS. They should therefore be seen
as phenomenological.

Vega’s eSD model: In Vega’s model, the EPR line is divided into N bins with frequencies wk and intensities
fi for which the electron spin polarization P(wx) is assumed to be homogeneous. The intensity of the line
is normalized so that Zﬁ=1 % = 1. This model was presented in several publications. The form described
here is closest to that presented in Ref. *>. However, we have found some small mistakes and typos in the
publications (eg: missing h in a Boltzmann factor and signs) that we attempted to correct in this work.

The shape of the EPR line under saturation by mm-wave irradiation at the steady-state is obtained by
solving numerically the differential equation

LP(t) = Wpyy + Ry + Rp)P(®), Eq. S4
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where P(¢) = [1, Py, P, ..., Py]Tis a vector representing the polarizations in the N bins. The first unity
term in the vector allows to compute relaxation while keeping the differential equation homogeneous.
The three matrices Wmw, R1, and Rp acting on the polarization vector represent mm-wave irradiation, Tie
relaxation, and spectral diffusion, respectively. We did not include the DQ and ZQ SE transitions assuming
that they are weak in our experimental conditions. W, represents the saturation of the single quantum
transitions and only contains non-zero elements on the diagonal, which can be represented as
_ W3T,
1+ (wg—wmw)2TE’

(me)kk = Eg. S5

where ws, T2, wk, and wmy are the strength of the mm-wave field in rad.s™, the electron spin-spin relaxation
time constant, the electron spin resonance frequency of bin k, and the mm-wave frequency, respectively.
The action of Ry can be represented in the subspace of electron spin k as

% (Pkl(t)) - (& —OT—11> (Pkl(t))' Eq. S6

where Ty = T1e is assumed to be constant across the EPR line and Pq is the Boltzmann polarization for bin
k, calculated by setting wo = w in Eg. S3. The non-zero matrix elements of R; can therefore be written as

P
R =75 Eq. S7

1

(Rl)kk = - T_1

Finally, Rp, which represents spectral diffusion, is the only matrix with non-diagonal terms, which connects
bins with each other. It can be represented as the sum

Rp =Y >k Rpkj Eq. S8
of matrices in the subspace of electron spin k and j,

AeSD 1 <—77kjfj +fj>

(w-w;)* 1+ \ i —fx

RD,kj = Eq S9
where A*P, f, and f; are a coefficient describing the efficiency of spectral diffusion in s and the normalized
EPR intensities of bins k and j, respectively. The thermal correction factor

_ Poj
Nkj = ?’k, Eqg. S10

ensures that spectral diffusion preserves the gradient of polarization at Boltzmann equilibrium that arises
from the difference in Larmor frequency of the individual spin packets. Note that the thermal correction
factor in Eq. S10 is defined in this way in Ref. 4. An alternative form of this term is given in several other
references by the same group (eg, Ref. >”%), which is based on Boltzmann factors

h
Nij = €xXp (—K—BT(a)k - a)j)>. Eq. S11

According to Eq. 16b in Ref. 7 and Eq. 69 in Ref. é, the expression in Eq S11 is supposed to be equal to that
in Eq. S10. However, these equations are in fact not equal; the proposed Boltzmann factor gives a
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population ratio, and not a polarization ratio as in Eq. S10. We performed test simulation of the eSD model
switching off mm-wave saturation (that is, setting w; = 0). In this case, only spectral diffusion is active. If
the thermal correction factor is correct, the polarization across the EPR line, should remain constant at all
times. We found that Eq. S10 did produce the appropriate gradient of polarization (as predicted by Eq. S3),
while not Eq. S11 (see Figure S6). We therefore chose to use Eq. S10.

0.2665 T T T T :
0.266
+ 0.2655 -
c
kel
©
N
o
£ 0265
T from Eq. S10
e from Eq. S11
0.2645 . X
r,'k‘j=1
i
EPR line
0.264 s ! s !
395 395.5 396 396.5 397 3975 398

mm-wave freq. (GHz)

Figure S6: Verification of the validity of the thermal correction factor given in Eg. S10. The polarization as a function
of frequency is simulated using the eSD (see Eq. S4) for a Gaussian EPR line with standard deviation of 100 MHz
centered at 396.5 GHz (represented by a grey line in arbitrary units), with no mm-wave irradiation (w; =0), T, =1 us
(which does not influence the simulation because w; = 0), 1 = 1 ms, and A®® = 4000 ps3. The black dashed line
represents the initial polarization, computed using Eqg. S3. The blue, red dotted, and yellow dashed dotted lines
represent the final polarization (at tmax = 5:T1e = 5 ms) if the thermal correction factor is computed using Eq. S10,
using Eq. S11, or set to 1, respectively.

In all cases, we used the differential equation solver of MATLAB ode15s, which is optimized for problems
with timescales ranging on different orders of magnitude. The differential equation was solved on a time

range from 0 to tmax = 5-T1e. The last vector ﬁ(tmax) computed by odel5s was assumed to represent the
electron spin polarization at dynamic equilibrium.

Analytical solution to the spectral diffusion equation: An alternative to Vega’s eSD is to treat spectral
diffusion as a standard 1-dimensional diffusion equation. A difficulty that arises in this case is how to obtain
the frequency dependence of the diffusion coefficient. Wenckebach recently proposed an approach based
on Monte Carlo simulation.® Here, we use a simple approximation of the diffusion equation where the
diffusion coefficient is assumed to be constant across the EPR line, as proposed by Vaneeckhaute et al.’
This approach has the advantage of yielding an analytical solution with a limited number of free
parameters. Under the assumption of constant Ti. and diffusion coefficient D across the EPR line, the
diffusion equation can be expressed as

PO P(O))

a
EP(V) = —nw? h(w wuw)P(a)) + D P( ) + 2—— Eq. S12

e
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where h and D are the homogeneous broadening and the spectral diffusion coefficient, respectively. If we
further assume that the homogeneous broadening is small compared to the inhomogeneous broadening,
the mm-waves are only on resonance with spins of the exact same frequency. Eq. S12 then becomes

a9 _ 2 _ 92 Py—P(w)
o P(w) = —ntwi P(w)§(w — wypw) + D 07 P(w) + o Eq. S13
At equilibrium, that is, when Eq. S13 is null, the diffusion equation has the solution
|w—wmwl
Pyw(w) = Py (1 —exp (_T)) Eq. S14

where A = (DT1c)"? is the spectral diffusion length.

c. DNP model using analytical equations

This section shows the derivation of simple formula for the profiles of the solid effect (SE), the cross effect
(CE), and the truncated cross effect (tCE) for the case where spectral diffusion can be neglected. This
derivation also requires the hypothesis that the electron spin-lattice relaxation time Ti. is constant across
the EPR line, leading to a constant saturation efficiency across the line. Alternatively, assuming full
saturation yields the same result. It is further assumed that nuclear spin diffusion averages nuclear
polarization across the sample.

Solid effect case: If there is no electron spectral diffusion, the polarization of electron spins on resonance
with double- and zero-quantum transitions (DQ and ZQ) are not affected by each other nor they are
affected by depolarization of electron spin on resonance with single quantum transition (SQ). In this case,
SE affects the nuclear polarization only for nuclear spins interacting with electrons on resonance with the
ZQ and DQ transitions, yielding

PISE’ZQ(a)mW + wy) = —xP,, Eg. S15
and
PP (@ — @) = +xPy, Eq. 516

where w, x, and Py are the absolute value of the nuclear Larmor frequency, a factor describing the dynamic
efficiency of the saturation of the SE transitions, and the electron polarization at Boltzmann equilibrium
(see Eq. S3), respectively. Assuming that nuclear spin diffusion equalizes polarization across the sample
and that the nuclear Boltzmann polarization and nuclear relaxation are negligible, the bulk nuclear
polarization is the weighed summed of the two contributions of Eqgs. S15 and S16

SE, SE,
PSE(wmw) = f(@mw + @)P*? + f (0w — 0)P>PL Eq. S17

= Xpo(f(wmw — wp) — f(onw + wl));

The shape of the SE profile is then given by Eq. S17, dropping constant factors

fSE(wmw) = f(wmw —wp) — f((‘)mw + wy), Eq. 518
which can be obtained concisely as the convolution integral
fSE(a)mw) = (f * ) [wmw], Eq. S19
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of the EPR line with the function
uw) = 8(w — w;) — 8(w + wy), Eq. S20
where § is the Dirac delta function.

Cross effect case: The CE transfers the polarization difference between two electrons to a nuclear spin via
triple spin flips, provided the Larmor frequency difference of the two electrons w; — w, matches the
nuclear Larmor frequency w,. At equilibrium, a nuclear spin interacting with such a pair of electron spins
has polarization®!!

P,—P
PI_ 1 2

=5 Eq. 521

where P; and P, are the polarizations of the two electron spins. The denominator is a normalization
constant that only plays a role at high electron polarization. Assuming that spin diffusion averages the
nuclear spin polarization, the bulk nuclear polarization is given by the weighted average over all possible
electron spin pairs fulfilling the CE matching condition

P(w)—P(w—wy)
1-P(w)P(w-wp)

P = if dof(w)f(w — wy) Eq. S22

where P(w) is the electron polarization at frequency w in the EPR line, and the normalization factor
condition

Fy = [dof(0)f(w — wp). Eq. S23

The term flw)flw— w)/Fnin Eq. S22 expresses the probability for a particular pair of electron spins to fulfill
the CE matching condition, given the EPR intensities f(wi) and f(w— w). In absence of mm-wave irradiation,
the P(w)) — P(w— w) is equal to the nuclear Boltzmann polarization Py and Eq. S22 predicts P, = Py. In this
case, CE serves as a T; relaxation mechanism for nuclear spins. CE DNP consist of creating an out-of-
equilibrium difference between electron spins via mm-wave (or microwave) irradiation that then transfers
spontaneously to nuclear spins.

If there is no spectral diffusion, triple spin flips only result in hyperpolarization between the electron spins
being saturated (with w = wmw) and those satisfying w = Wmw— W) and w = Wmw + wy, on the left and on the
right of the irradiation frequency, respectively. In these two cases, Eq. S21 gives the polarization of nuclear
spins interacting with such electron spin pairs are

CE,left _ P(omw)—P(@mw—w1)
PI we t(wmw) - 1—P(wmw)P(wmw_a:l)' Eq 524

and

CEright _ P(@mwtw)—P(®@mw)
PI (wmw) - 1-P(wmw)P(@mw+wp)’ Fa. 525

Because there is no spectral diffusion, the polarization of the left and right partners is that of thermal
equilibrium Pg

P(wmw — @p) = P(wpy + wp) = Py, Eq. S26
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and assuming a homogeneous Ti. across the EPR line (or that saturation is infinite), the saturation factor
is constant across the EPR line, yielding

P(wpy) = P52, Eq. S27
We therefore have
CE left __ psat_p,
A (0mw) = s Eq. 528
and
CEright _ Py—Psat
R (Wmw) =70 Eq. 529

Hence, the integral of Eq. S22 is the sum of the two terms of Eqgs. 528 and S29, with the weights,
flwmw)flwmw— wi)/Fn and flwmw)flwmw + wi)/Fy, respectively, yielding

(Wmw) f(Wmw—®1) 8 (Wmw) f(Wmwtw1) CErigh
P[CE(wmw) — flw fF;U wi F)ICE left(a)mw) +f w f;‘;u wi 1_.,1 rig t((l)mw) Eq. s30
—i PO_Psat

f(a)mw)(f(a)mw + wl) - f(wmw - 0)1)) .

" Fy 1-Pypsat
The shape of the CE profile is then given by Eq. S30, dropping the constant factors

fCE(me) = f(wmw)(f(wmw + wl) - f(a)mw - a)I)) . Eq S31

As for the SE, this can be computed in a compact way as a convolution integral (or as the product of the
EPR line with the SE profile)

fCE(wmw) = f(wmw)((f * u)[wmw]) = f(wmw)fSE(wmw)- Eq. S32

Truncated cross effect case: the tCE without spectral diffusion can be computed in a similar way as the CE.
Let us call fs and fr the EPR lineshape of the slow- and fast-relaxing spins, respectively. For the case where
spectral diffusion among the slow-relaxing spins can be neglected, triple spin flips leading to nuclear
hyperpolarization only occur for the saturated slow-relaxing spin (with ws= wmw) and the fast-relaxing spins
satisfying we = Wmw— W) and we= wWmw + wi. Eqs. S24 and S25 can then be adapted to the tCE as

CE lef Ps(wWmw)—Pr(Wmw—wy)
PIt He t(me) - 1_SPS(wmw)PFF(wmw_wll)’ ECI 533

and

tCE,right _ Pr(omwtw)—Ps(®@mw)
PI (me) B 1-Ps(@mw) PF(@mw+o1)’ Fq. 534

Assuming that fast-relaxing spins are always at Boltzmann polarization Py and writing Ps(wmw) = P*, we

have
tCEleft __ Psat_p,
P (Wmw) = Tpsatpy Eq. 535
and
tCE,right __ Py—psat
PI (a)mw) = _psatp’ Eq. S36
0
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Hence, the

PItCE (wmw) — fs(wmw)f:l\fwmw_wl) PItCE,left(wuw) + fS(wmw)f:I\Ewmw"'wl) PItCE,right(wmw)
1 Py—PSat
= a 1-psatp, fS(wmw)(fF(wmw + (‘)I) - fF((Umw - wl)) , Eq. S37

where the normalization factor is defined as

Fy = [ dofs(@)(fr(w + wp) + fr(w — ). Eq. $38

The shape of the tCE profile is then given by Eq. S38, dropping constant factors

ftCE(Vuw) = fS(wmw)(fF((Umw + wl) - fF(wmw - wl))- Eq. S39

In the case where the fast-relaxing are shifted from the slow-relaxing by approximately w; (i.e., resonance-
matched), only one of the two terms fe(wmw + w)) and fe(wmw — w)) is non-zero. Furthermore, if the
resonance of the fast-relaxing spins is broad compared to the slow-relaxing spins, the value of f¢ in the one
term that is non-zero can be considered constant over the range where fs(wmw) is non-zero. Then, we have
either

frce(Wmw) = +fs(@mw), Eq. S40

or

frce(@Wmw) = —fs(Wmw), Eq. S41

whether the fast-relaxing spins are shifted by +w, or —w, with respect to the EPR line of the slow-relaxing
spins, respectively. In this case, the DNP profile has the same shape as the EPR line, up to a sign, as is the
case for the Overhauser effect.

d. DNP model including spectral diffusion

To include spectral diffusion in the simulations of the CE and tCE, one must consider the triple flips of the
nucleus with all pairs of electrons spins fulfilling the CE matching conditions, not only on resonance with
the mm-waves. In the case of the CE, the sum can be written as

CE _ 1N Pmw(wg+wD) —Pmw (k)
P[ (me) P k=1f(wk)f(wk + 0)1) 1-Pmw (@ +VD) Pmw (@p)’ Ea. 542

where N is the number of bins in the EPR spectrum, and the normalization factor is

Fy = XR=1 f (i) f (wg + wp). Eq. 543

Note that it is not necessary to account for triple-spin flips on the left and right, as they are both covered
by the summation. In the case of the tCE, the integration yields

Po—Pg"" (wy)
1=Po P& (wp)

PSPy

+ fS (a)k)fF (O)k + wI) 1—P0Psmw(wk)

PItCE(wmw) = %Zk (fs(wk)fF(wk — wp) ), Eq. S44

where N is the number of bins in the EPR spectrum, and the normalization factor is

K= Zgzl(fS(wk)fF(wk — wp) + fs(wp) fr(wy + wl))- Eq. $45
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4. Simulation results

a. P1EPR line

Figure S7 shows the simulated EPR line at 14.1 T as in the main text of the paper (black line) together with
the contributions of the different P1 populations.
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Figure S7: Simulation of the EPR line using Easyspin’s function pepper for solid-state powder averaging. The summed
spectrum (in black) is decomposed into three contributions (isolated, dipolar-broadened, and exchange-coupled
pairs). See the Methods section for details on the simulation parameters.

b. DNP profiles with different hole burning models

The DNP profiles were simulated for P1 spins at 14.1 T as a linear combination

f(Wmw) = Xecefrce(@mw) + (1 — Xece) feg (Wmw), Eq. S44

where xice is contribution of the tCE profile between 0 and 1, using Egs. S42 and S44. The polarization of
the slow-relaxing P1 spins as function of frequency Ps™"(wx) was computed using both hole burning models
presented in Section 3b. In both cases, it was assumed that dipolar-broadened and exchange-coupled P1
spins play the role of slow- and fast-relaxing partners. Figure S8 shows the simulated DNP profiles using
Vega’s eSD model (see Eq. S4) and the analytical solution to the diffusion equation (see Eq. S14), in panel
a and b, respectively. For the eSD model, 11 free parameters were manually fit to the experimental data:
xwce, T1 (individually for set of experimental conditions), T, w1, and AP, respectively, (the last three being
kept constant for all conditions). For the analytical model, the only fit parameters were xce and the spectral
diffusion length A. Table S2 summarizes the fit results. The digitization of the EPR spectrum was set to a
low value for the eSD model (as represented by dots on the EPR lines of the bottom plots of Figure S8a) to
fulfill the condition* that the frequency difference between the bins (8 MHz) does not exceed the
homogeneous broadening: wi1 - wx > 2/T> (8 MHz). In the case of the analytical model, there is
requirement regarding the frequency separation between the bins.
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Table S2: Fit parameters of the spectral diffusion/hole burning models used to compute the DNP profiles shown in

Figure S8.

Vega's eSD model Analytical model

T (K) 298_’ 298, 100 35 T(K) 298_’ 298, 100 35
Static MAS Static MAS

Xtce 0.5 0.5 0.5 0.5 Xtce 0.6 0.6 0.7 0.7

T.(ms) 0.12 0.12 4 5 A (MHz) 22 20 130 130

T, (ns) 40

w1/2m (kHz) 300

AP (us3) 800

a. Using Vega's eSD model

298 K, static 298 K, 6 kHz 100 K, 6 kHz 35K, 5 kHz
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Figure S8: Computation of the simulated DNP profiles using Egs. S42 and S44 and the Vega’s eSD model (see Eq. S4)
and the analytical solution to the diffusion equation (see Eq. S14), panel a and b, respectively. In each panel, the top
row represents the normalized experimental DNP profiles (colored symbols) and the model (black lines). The bottom
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row represents the EPR line of the slow-relaxing spins under saturation (colored lines) compared with that at thermal
equilibrium (grey lines), for three different mm-wave frequencies (represented by vertical dashed lines).

Table S3: Separation between the positive and negative DNP optima in the experimental profiles Aeyxp, compared with
that of the simulated profiles Asim (simulated using the analytical solution to the diffusion equation), and the profiles
of the tCE and CE contributions, Awe and Acg, respectively, for the simulation using the analytical solution to the
diffusion equation.

T (K) Aexp Asim Drce Ace
298, static 162 175 188 150
298, MAS 162 175 184 150

100 215 188 196 163

35 215 196 196 163

¢c. SE-DNP simulation

Figure S9 shows the simulated DNP profile for the SE (in gray) using Eq. S19 and the entire EPR line (isolated,
dipolar-broadened, and exchange-coupled spins) compared with the experimental results in all

experimental conditions (colored symbols).
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Figure S9: SE simulation using Eq. S19 (gray line), compared with the experimental data (colored dots).

d. Prediction of the DNP profiles at 3.3and 6.9 T

The 3C-DNP profiles acquired at 3.3 and 6.9 T and room temperature for the same diamond sample were
reported in Ref. 12, It is shown in Figure $10 as red triangles. We applied the model shown Figure 6, that is,
CE and tCE where spectral diffusion is computed using the analytical expression of Eg. 3. In these
conditions (lower field and possibly stronger saturating field), the contribution of the SE is more
pronounced than at 14.1 T, so it was included in the simulation. The black lines show the individual
simulated DNP profiles and their sum. The EPR line of the slow relaxing spins (dipolar-broadened and
isolated) at thermal equilibrium and under saturation at a select frequency (grey and lines, respectively)
is shown in the top right plot of each panel. The EPR line of the fast-relaxing spins (exchange-coupled pairs)
is shown in the bottom right plot of each panel. The spectral diffusion length and relative contributions of
the tCE, CE, and SE were manually fitted. The static magnetic field of 3.3476 and 6.9074 T were also let
free to align the simulated and experimental profiles. The spectral diffusion length was fitted to 6 and 22
MHz at 3.3 and 6.9 T, respectively. For comparison, a spectral diffusion length of 22 MHz was obtained at
14.1 T (see Table S2).
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The model is in good agreement with the experimental data at 6.9 T (see Figure S10b). At 3.3 T, the model
reproduces most of the features (see Figure S10a). However, the central negative absorptive feature is not
reproduced by the model (highlighted in yellow in Figure S10a). This very feature was attributed to tCE by
Bussandri et al.? It is possible that the fast-relaxing spins taking part into the proposed tCE feature are
spin species different from P1 centers, as suggested by Bussandri et al.*?
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Figure S10: a,b. Comparison of the experimental DNP profiles reported in Ref. 12 at 3.3 and 6.9 T, respectively, and
room temperature in static mode for the same diamond sample as in this study. The top plots on the right of each
panel show the EPR line of the slow-relaxing spins at thermal equilibrium and under saturation at a select frequency,
represented as grey and red lines, respectively. The black dashed lines represent the microwave irradiation frequency
and the two corresponding positions for triple-spin flips partners. The bottom plots on the right of each panel show
the EPR line of the fast-relaxing spins at thermal equilibrium. The black dashed lines represent the two positions for
triple-spin that correspond to the irradiation frequency on the plot of the slow-relaxing spins. The yellow area in
panel a highlights the region where the model does not reproduce the experimental data.

e. Transition distribution for exchange-coupled P1 pairs

The EPR spectrum of the exchange-coupled was simulated using EasySpin function pepper, with the option
that separates the EPR spectrum into the components corresponding to different transitions (option
separate set to the value transitions) for a magnetic field of 14.1 T and using the parameters given in the
Methods section of the paper. The resulting spectra are shown in the left panel of Figure S11 (as colored
lines). The sum of all the components corresponds to the whole EPR line and is shown as a black line. The
transition intensities were calculated by integrating the individual components. Their relative
contributions of the transitions are shown on the right panel of Figure S11 as blue dots, ordered in
descending intensity. The cumulative distribution of the blue curve in Figure S11 is shown in black on the
same plot. This plot shows that the most intense transition only contributes to about 5% of the total EPR
line and the 20 first most intense transitions account for less than 50% of the total EPR line.
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Figure S11: Decomposition into individual transitions of the powder-averaged EPR spectrum of exchange-coupled P1
spin pairs. Left: EPR spectrum of the individual transitions (colored lines) and sum of all transitions (black line). Right:
Transition intensities (obtained by integrating the spectra on the left) ordered from most to least intense (blue dots)
and cumulative distribution of the transition intensities (black line).
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