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Observation of quasi-planar boron carbonyl complexes

B36(CO)," (n = 1-6) analogous to coronene monocation C,4H;,"
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Fig.S1 Optimized low-lying isomers of B;¢", with the relative energies indicated in eV at DLPNO-
CCSD(T)/def2-svp in square brackets and PBE0/6-311+G(d).
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Fig.S2 Optimized low-lying isomers of B3¢(CO)," (n = 1-3) at PBE0-D3/6-311+G(d) level, with the
relative energies (AE) indicated in eV.
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Fig.S3 Optimized low-lying isomers of B;3¢(CO)," (n = 4, 5) at PBE0-D3/6-311+G(d) level, with
the relative energies (AE) indicated in eV.



Fig.S4 Optimized low-lying isomers of B;4(CO)," (n = 6, 7) at PBE0-D3/6-311+G(d) level, with
the relative energies (AE) indicated in eV.



Fig.S5 Optimized low-lying isomers of B3¢(CO), (n = 1-3) at PBE0-D3/6-311+G(d) level, with the
relative energies (AE) indicated in eV.
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Fig.S6 Optimized low-lying isomers of B;3¢(CO), (n = 4-6) at PBE0-D3/6-311+G(d) level, with the
relative energies (AE) indicated in eV.
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Fig.S7 Calculated relaxed potential energy curves for the approach of CO toward Bs¢" to form
B3cCO™ (1a) at PBE0/6-311+G(d), with the B-CO distances indicated in pm.
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Fig.S8 (a) Calculated relaxed potential energy curves for the approach of CO toward B;sCO"(1A)
to form B34(CO),"(2A, 2B) at PBE(0/6-311+G(d). (b) Potential energy profile for the formation of
2A and 2B from 1A and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile
indicates the B-CO distances (in pm) and the imaginary vibrational frequency of TS1 (in cm™),
with all values including zero-point energy corrections. The relative energies in square brackets are
from DLPNO-CCSD(T)/def2-SVP single-point calculations on the PBEO0-D3/6-311+G(d)
optimized structures.
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Fig.S9 (a) Calculated relaxed potential energy curves for the approach of CO toward B;¢(CO),"(2A,
2B) to form B;4(CO);*(3A) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of
3A from a mixture of 2A and 2B with CO, calculated at the PBE0-D3/6-311+G(d) level of theory.
The profile indicates the B-CO distances (in pm) and the imaginary vibrational frequency of TS2
and TS3 (in cm™), with all values including zero-point energy corrections. The relative energies in
square brackets are from DLPNO-CCSD(T)/def2-SVP single-point calculations on the PBE0-D3/6-
311+G(d) optimized structures.
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Fig.S10 (a) Calculated relaxed potential energy curves for the approach of CO toward
B36(CO);7(3A) to form B35(CO), (4A) at PBE0/6-311+G(d). (b) Potential energy profile for the
formation of 4A from 3A and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The
profile indicates the B-CO distances (in pm) and the imaginary vibrational frequency of TS4 (in
cm™), with all values including zero-point energy corrections. The relative energies in square
brackets are from DLPNO-CCSD(T)/def2-SVP single-point calculations on the PBEO0-D3/6-
311+G(d) optimized structures.
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Fig.S11 (a) Calculated relaxed potential energy curves for the approach of CO toward
B36(CO)47(4A) to form B35(CO)s"(SA) at PBE0/6-311+G(d). (b) Potential energy profile for the
formation of 5A from 4A and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The
profile indicates the B-CO distances (in pm) and the imaginary vibrational frequency of TS5 (in
cm™), with all values including zero-point energy corrections. The relative energies in square
brackets are from DLPNO-CCSD(T)/def2-SVP single-point calculations on the PBEO0-D3/6-
311+G(d) optimized structures.
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Fig.S12 (a) Calculated relaxed potential energy curves for the approach of CO toward
B36(CO)s"(5A) to form B35(CO)s"(6A) at PBE0/6-311+G(d). (b) Potential energy profile for the
formation of 6A from 5A and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The
profile indicates the B-CO distances (in pm) and the imaginary vibrational frequency of TS6 (in
cm™), with all values including zero-point energy corrections. The relative energies in square
brackets are from DLPNO-CCSD(T)/def2-SVP single-point calculations on the PBEO0-D3/6-
311+G(d) optimized structures.
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Fig.S13 (a) Calculated relaxed potential energy curves for the approach of CO toward
B36(CO)s"(6A) to form B35(CO);7(7A) at PBE0/6-311+G(d). (b) Potential energy profile for the
formation of 7A from 6A and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The
profile indicates the B-CO distances (in pm) and the imaginary vibrational frequency of TS7 (in

cm™), with all values including zero-point energy corrections.
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Fig.S14 (a) Calculated relaxed potential energy curves for the approach of CO toward B;4 to form

B36CO (1a) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of 1a from B;¢ and
CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile indicates the B—CO
distances (in pm) and the imaginary vibrational frequency of TS8 (in cm™), with all values including

zero-point energy corrections.
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Fig.S15 (a) Calculated relaxed potential energy curves for the approach of CO toward B;cCO (1a)
to form B;4(CO), (2a) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of 2a
from 1a and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile indicates the
B-CO distances (in pm) and the imaginary vibrational frequency of TS9 (in cm™), with all values

including zero-point energy corrections.
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Fig.S16 (a) Calculated relaxed potential energy curves for the approach of CO toward B;¢(CO),
(2a) to form B;4(CO); (3a) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of
3a from 2a and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile indicates
the B-CO distances (in pm) and the imaginary vibrational frequency of TS10 (in cm™), with all

values including zero-point energy corrections.
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Fig.S17 (a) Calculated relaxed potential energy curves for the approach of CO toward B;¢(CO);
(3a) to form B;4(CO), (4a) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of
4a from 3a and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile indicates
the B-CO distances (in pm) and the imaginary vibrational frequency of TS11 (in cm™), with all

values including zero-point energy corrections.
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Fig.S18 (a) Calculated relaxed potential energy curves for the approach of CO toward B;¢(CO)4
(4a) to form B;4(CO); (5a) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of
Sa from 4a and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile indicates
the B-CO distances (in pm) and the imaginary vibrational frequency of TS12 (in ¢cm™), with all

values including zero-point energy corrections.
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Fig.S19 (a) Calculated relaxed potential energy curves for the approach of CO toward B;¢(CO)s
(6a) to form B;4(CO)¢ (6a) at PBE0/6-311+G(d). (b) Potential energy profile for the formation of
6a from Sa and CO, calculated at the PBE0-D3/6-311+G(d) level of theory. The profile indicates
the B-CO distances (in pm) and the imaginary vibrational frequency of TS13 (in cm™), with all

values including zero-point energy corrections.
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Fig.S20 AANDP bonding patterns of (a) Cy; B3sCO* (1A) and (b) C,, B3s(CO),* (2A), with the
occupation numbers (ONs) indicated.
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Fig.S21 AANDP bonding patterns of (a) C; B36(CO);" (3A) and (b) C;, B36(CO)4* (4A), with the
occupation numbers (ONs) indicated.
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Fig.S22 AdANDP bonding patterns of (a) C; B3s(CO)s* (5A) and (b) C; B3(CO)s™ (6A), with the
occupation numbers (ONs) indicated.
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Fig.S23 AdNDP bonding patterns of (a) C; B3cCO (1a) and (b) C; B;3s(CO), (2a), with the

occupation numbers (ONs) indicated.
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Fig.S24 AANDP bonding patterns of (a) C; B3s(CO); (3a) and (b) C, B3s(CO), (4a), with the

occupation numbers (ONs) indicated.
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ON=1.71-1.87 l¢| ON = 1.88-1.91 |e| ON = 1.83-1.95 ¢|
E ¢ Yaars
P
6 x 4¢-2e m bonds 3 x 36¢-2e m bonds
ON = 1.33-1.77 |¢| ON =1.92-1.99 l¢|

&

3 % |2¢-2e 7 bonds
ON = 1.76-1.84 Je|

(b) G5, B3s(CO)4 (6a)

six lone pairs on O 12 x 2¢-2e o bonds 12 x 2¢-2e © bonds
ON=1.98 ¢| ON = 1.98-2.00 |¢| ON = 1.99-2.00 [e|

18 x 2¢-2¢ ¢ bonds 6 x 3¢-2e ¢ bonds 18 x 4dc-2e ¢ bonds

ON = 1.72-1.82 |e| ON = 1.88-1.90 e ON = 1.83-1.95 e
N f S

6 x 4¢-2e m bonds 2 % 36¢-2e 7 bonds

ON = 1.35-1.49 |¢| ON = 1.94-1.99 |e|

3 % 12¢-2e m bonds
ON =1.75-1.82 |¢|

Fig.S25 AdANDP bonding patterns of (a) Cs B3s(CO)5 (5a) and (b) C5, B35(CO)s (6a), with the

occupation numbers (ONs) indicated.
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Fig.S26 (a) Calculated ICSS surfaces of C,, Bss* (1), Cs, B3 (2) at PBEO level. Yellow and green

Vectors Magnitude / a.u.

regions stand for chemical shielding and de-shielding areas, respectively. (b) The corresponding
calculated GIMIC plots 1.0 A above the molecular planes, with the calculated ring current densities
indicated in a.u. in the colour scale. The external magnetic field is perpendicular to the molecular

plane. The red arrows represent directions of the ring currents on the GIMIC iso-surfaces.
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Fig.S27 (a) Calculated ICSS surfaces of C; B3cCO* (1A), Cy, B3s(CO)," (2A) at PBEO level.

Vectors Magnitude / a.u.

Yellow and green regions stand for chemical shielding and de-shielding areas, respectively. (b)
The corresponding calculated GIMIC plots 1.0 A above the molecular planes, with the calculated
ring current densities indicated in a.u. in the colour scale. The external magnetic field is
perpendicular to the molecular plane. The red arrows represent directions of the ring currents on

the GIMIC iso-surfaces.
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Fig.S28 (a) Calculated ICSS surfaces of C; B3s(CO);* (3A), C,, B36(CO)4* (4A) at PBEO level.

Vectors Magnitude / a.u.

Yellow and green regions stand for chemical shielding and de-shielding areas, respectively. (b)
The corresponding calculated GIMIC plots 1.0 A above the molecular planes, with the calculated
ring current densities indicated in a.u. in the colour scale. The external magnetic field is
perpendicular to the molecular plane. The red arrows represent directions of the ring currents on

the GIMIC iso-surfaces.
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b) ICSS 1so =+5.0 ICSS 1so ==+5.0

—70.30
-0.25
-0.20
-0.15

-0.10

-0.05

i 1.2x10-2

Fig.S29 (a) Calculated ICSS surfaces of C; B3¢(CO)s* (5A), Cs B36(CO)s* (6A) at PBEO level.

Vectors Magnitude / a.u.

Yellow and green regions stand for chemical shielding and de-shielding areas, respectively. (b)
The corresponding calculated GIMIC plots 1.0 A above the molecular planes, with the calculated
ring current densities indicated in a.u. in the colour scale. The external magnetic field is
perpendicular to the molecular plane. The red arrows represent directions of the ring currents on

the GIMIC iso-surfaces.
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Fig.S30 Shape of the deformation densities Apiy.¢0, Which are associated with the orbital

interaction energies AEorb (in kcal mol™) in Fe(CO)s. The color code of the charge flow is red to

blue.



Table S1. EDA-NOCYV results for B3s(CO)* (1A) at the PBEO/TZ2P-ZORA level using PBE0/6-
311+G(d) optimized geometries, with CO and B3s" designated as the interacting fragments.

Energy values are given in kcal/mol.

. Interacting fragment
Energy term Assignment g lrag

B3 + CO
AEin -41.84
AEpauli 248.62
AEcisiai™ -117.88 (40.58%)
AEqr™ -172.58 (59.42%)
AEo(1) [B3s*(p)] < CO o donation -103.06 (59.72%)
AEo (2) P! [Bss'(p)] — CO = backdonation -32.32 (18.73%)
AEo (3) 1 [B3s"(p)] — CO = backdonation -15.26 (8.84%)
AEor (rest) [P -21.94 (12.71%)

[a] The values in parentheses give the percentage contribution to the total attractive interactions
AEeistat+ AEor. [b] The values in parentheses give the percentage contribution to the total orbital
interactions DEorh,



Table S2. EDA-NOCYV results for B3s(CO) (1a) at the PBEO/TZ2P-ZORA level using PBE0/6-

311+G(d) optimized geometries, with CO and B3 designated as the interacting fragments. Energy

values are given in kcal/mol.

Interacting fragment

Energy term Assignment Bas + CO

AEin; -38.41

AEpauli 273.20

AEcisiai™ -129.72 (41.63%)
AEqr™ -181.89 (58.37%)
AEo(1) [B3s(p)] < CO o donation -100.42 (55.21%)
AEor (2) 1! [B3s(p)] — CO 7 backdonation -38.67 (21.26%)
AEo (3) ™ [B3s(p)] — CO = backdonation -16.78 (9.22%)
AEom (rest) o] -26.02 (14.31%)

[a] The values in parentheses give the percentage contribution to the total attractive interactions

AEgistat+ AEor. [b] The values in parentheses give the percentage contribution to the total orbital

interactions

AEorb.



Table S3. EDA-NOCYV results for sing]et Dy, symmetric Fe(CO)5 complexes at the PBEQ/TZ2P-
ZORA level using PBE0/6-311+G(d) optimized geometries. The interacting fragments are the

metal atom Fe in the singlet and (CO)s in the singlet state. Energy values are given in kcal/mol.

Interacting fragment

Energy term Assignment Buct 4 CO

AEin -276.38

AEpauli 1035.23

AEcisiai™ -548.99 (41.86%)
AEqr™ -762.62 (58.14%)
AEo(1) P [Fe(p)] < (CO)s o donation -362.77 (47.57%)
AEo (2) ™ [Fe(p)] < (CO)s & donation -51.11 (6.7%)
Aoy (3) [Fe(s)] «— (CO)s & donation -3.06 (0.40%)
AEor (41 [Fe(d)] — (CO)s m backdonation  -123.36 (16.18%)
AEor (5)1 [Fe(d)] — (CO)s m backdonation  -100.19 (13.14%)
AEors (6)1 [Fe(d)] — (CO)s m backdonation ~ -98.09 (12.86%)
AE o (7) ] (CO)s polarization -9.62 (1.26%)
AEor (8) [ (CO)s polarization -4.86 (0.64%)
AE o (9) [P (CO)s polarization -3.06 (0.40%)
AEom (rest) [P -6.50 (0.85%)

[a] The values in parentheses give the percentage contribution to the total attractive interactions
AEeistat+ AEor. [b] The values in parentheses give the percentage contribution to the total orbital
interactions AEorp.



