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Table S1 Key performance metrics of thermocatalysis, electrocatalysis, and thermoelectric catalysis: substrate types, reaction 

conditions, and product selectivity

Performance metrics Thermocatalysis Electrocatalysis Thermoelectric catalysis

Substrate

Mainly large polymers; 

also small molecules (low 

selectivity)

Small molecules Large & small molecules

Typical temperature (°C) a 100-250 Room temperature 25-100

Applied potential (V vs. RHE) a −

1.2-1.8 (lower for noble 

metals via direct 

adsorption)

0.6-1.2

Major products
Furanics, sugars, levulinic 

acid

Formate, xylonic acid,

2,5-Furandicarboxylic acid

2,5-Furandicarboxylic acid, 

formate, furans

Applicable to macromolecular 

biomass
Yes No Yes

Faradaic efficiency a − 60-95%1-4 > 90%5, 6

Product selectivity Low High High

a The reported values represent typical ranges summarized from the literature and serve as reference comparisons, exceptions 

may exist in individual studies.
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Table S2 General criteria distinguishing reversible vs. irreversible reconstruction under thermoelectric fields

Descriptor 

category

Reversible/Adaptive surface evolution 

(strategy: engineer-controlled 

evolution)

Irreversible/Structural failure 

(strategy: preserve intrinsic lattice 

stability)

Assessment 

method

Driving principle

Field-regulated, shallow restructuring 

enabling optimized intermediate 

binding

Thermally accelerated disorder 

leading to permanent structural 

destabilization

-

Atomic 

coordination

Mild, recoverable change in metal-

ligand coordination; surface-limited 

adjustments

Collapse or significant loss of 

coordination framework; bulk 

transformation

Operando 

EXAFS/XAS

Electronic 

configuration

Tunable electronic states (e.g., 

reversible valence modulation, 

controllable orbital occupancy) 

responsive to temperature

Uncontrolled charge redistribution; 

trapped high-valence species or 

electronic disorder

XPS, XAS edge shift, 

DOS analysis

Surface phase 

behavior

Transient surface ordering/local motif 

rearrangement; reversible upon 

cooling or OCV

Amorphization, grain boundary 

proliferation, dissolution-driven 

vacancy runaway

Operando 

Raman/XRD

Energy landscape

Moderate reduction in activation 

barrier/ΔG for key steps (e.g., ~0.3–

0.7 eV tuning) without destabilizing 

lattice7-9

Loss of energetic selectivity 

window; drastic ΔG shifts (> 1.0 eV) 

leading to non-selective pathways10

DFT + kinetic 

analysis

Electrochemical 

signature

Minimal, reproducible hysteresis; 

stable slopes under cycling11

Progressive hysteresis growth; 

decay in charge-transfer 

characteristics12

LSV, Tafel, EIS

Chemical 

stability/Leaching

Minimal leaching (<0.1–0.3% /100 h); 

stable ligand or lattice integrity13, 14

Accelerated dissolution/ligand loss; 

irreversible composition drift15

ICP-MS/in situ UV-

Vis

Operational 

stability

Maintains function under 

temperature fluctuations and 

industrial-level current stress

Degradation accelerated by Joule 

heating, bubble stress, or thermal 

gradients

MEA/flow cell tests

Design rules
Controlled, surface-confined, and 

reversible structural adaptation

Strong scaffold, inhibited lattice 

flexibility, robust ligation 

environment

Material selection + 

computational 

screening
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Table S3 Representative design strategies linking challenges, engineering solutions, and performance benefits across different scales.

Design Scale Key Challenge Engineering Strategy Representative Catalyst Performance Benefit / Mechanism Ref.

Competition between organic/OH- 
adsorption

Heterointerface electronic modulation CeF3@Ni3N
Enhanced co-adsorption; lowered potential for MOR from 1.60 V (OER) 
to 1.38 V

16

Sluggish reaction kinetics (high Ea) Defect engineering (dual-cation vacancies)
High-entropy layered double 
hydroxides

Reduced ΔG for *OH-to-*OOH step from 1.09 eV to 0.52 eV 17

CO poisoning of active sites High-entropy alloy environment Pt1-NiCoMgBiSn
Modified d-band center (-2.22 to -2.73 eV); maintained durability for 
180,000 s 

18

Atomic Scale

Thermal sintering of single atoms Strong metal-support interaction FeNi on WCx Maintained atomic dispersion after annealing at 900 °C 19

Low local reactant concentration Local electric field enhancement CuO@Co-MOF Increased interfacial OH⁻ concentration and facilitated organics transfer 20

Diffusion barrier of bulky molecules Disruption of H-bond network Ni(OH)2/Cu(OH)2
Weakened interfacial water network; enabled high current density of 
1.3 A cm-2

21Interfacial 
Scale

Product inhibition/Equilibrium limits Interfacial Joule heating COF-SO3H
Selective evaporation of product; conversion increased to 80.5% 
(breaking thermal limit)

22

Bubble passivation at high currents Ordered parallel channels Ni(OH)2 PNAs
Electrolyte flux increased by 4.4-fold (100 μm s-1); halved bubble 
detachment time

23

Thermal agglomeration of nanoparticles Physical protective shell Ni@C Carbon shell prevented sintering; maintained high Ni0/Ni2+ ratio (43%) 24Mesoscale

Structural instability/Leaching Energetic anchoring via core-shell Pd@Pd-P@Pt
Increased vacancy formation energy (+0.29 eV); retained 93.9% activity 
after 20,000 cycles

25

Intrinsic activity limitation Lattice strain engineering Sr2IrO4
Downshifted d-band center via thermal expansion; overpotential 
reduced by 77 mV

26

Electronic state activation
Thermal suppression of charge 
disproportionation

Sr3Fe2O7 OER activation energy (Q) reduced from 57.9 to 35.8 kJ mol-1 27
Dynamic 
Design

High kinetic barrier for redox steps Thermally triggered spin transition Ni0.67Fe0.33OxHy
Heat drove spin-flipping; activation energy reduced from 6.33 to 2.79 kJ 
mol-1

28
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