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Table S1. Scores of 6 evaluation criteria (ease of operation, cleanliness, transfer size, completeness, versatility, and multi-functionality) shown in the radar chart
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Table S2.
Residue
Yea Device Contact resistance () and  Subthreshold  Long-term cycling
Transfer method Contaminants Carrier mobility removing Ref
r structure Threshold voltage (V) swing (SS) stability
strategies
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